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Introduction

Introduction

Things fail. Some failures are simply inconveniences, while others have can have significant economic
and societal impacts (e.g., resulting in loss of life).

Reliability modeling involves modeling the ways that systems can fail (and be repaired) in order to help
determine how to increase their design life, and eliminate or reduce the likelihood of failures, downtime
and safety risks. It involves developing a mathematical representation (a model) of an existing or
proposed engineered system in order to predict the performance of the system over time. The system
(e.g., a furnace) consists of multiple components (e.g., a blower, a burner) that work together to carry
out one or more functions. The output of these models typically consists of predictions of measures
such as reliability (the probability that a component or system will perform its required function(s) over
a specified time period) and availability (the probability that a component or system is performing its
required function(s) at any given time). Reliability models are typically used to compare design
alternatives on the basis of metrics such as throughput, warranty and/or maintenance costs.

For some systems, the analyst may be more concerned with (probabilistic) risk assessment than with
reliability. Probabilistic risk assessment (PRA) was initially developed to analyze complex systems such
as nuclear power plants and space missions. It focuses on predicting the probability of those
(presumably rare) failures that can lead to injury, loss of life, severe damage to the system, or perhaps
damage to the surrounding environment. Hence, in a PRA, the output of the model typically is the
probability of a particular unlikely, but high consequence outcome (e.g., catastrophic failure of the
system), and identification of those events or components most likely to lead to that outcome. Risk
assessment models are typically used to evaluate system safety and inform decisions regarding the

allocation of resources (e.g., design or operational changes) to accident prevention.

Although reliability modeling and risk assessment share some common features (e.g., they both deal
with failure of various components and systems), these two types of analyses traditionally use different
types of approaches (since they are focused on different types of results). This document discusses how
GoldSim, a dynamic probabilistic simulation program, can be used for both types of analyses.
Simulation-based approaches such as that used by GoldSim can make it possible to tackle complex
reliability and risk assessment problems that cannot be easily or realistically addressed using traditional
approaches.

For reliability modeling, the fundamental outputs produced by GoldSim consist of traditional reliability
metrics (e.g., reliability and availability) for the overall system, and for individual components within
that system. For risk assessment, GoldSim can be used to compute the probability of specific
consequences (e.g., an accident leading to loss of life) to support risk management for the system.
GoldSim also catalogs and analyzes failure scenarios, which allows for key sources of unreliability and
risk to be identified (i.e., root cause analysis).

However, the true power of GoldSim is that it can do more than compute only these kinds of reliability
and risk management metrics. This is because GoldSim differs from the few existing simulation-based
approaches to reliability and risk assessment in that it combines powerful features for representing the
failure (and repair) of complex systems with the flexibility to represent the true dynamic complexity and
evolution of the entire system. That is, GoldSim is first and foremost a powerful and extremely flexible
general-purpose, probabilistic, dynamic simulator that has been used to simulate the behavior and
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evolution of a wide variety of complex systems ranging from environmental systems (e.g., mines,
watersheds, waste disposal sites) to engineered systems (e.g., processing facilities, machines, space
missions) to business systems (e.g., companies, projects).

By combining these fundamental capabilities with the Reliability Module, a specialized extension for
dynamically modeling the failure (and repair) of engineered components, GoldSim makes it possible to
build “total system models” that can represent 1) evolving environmental conditions; 2) the realistic,
dynamic complexity of failure of components within the system (e.g., complex interdependencies,
failure rates that respond to evolving environmental conditions); and 3) the actual consequences of
failure (e.g., changes in throughput, costs, loss of life, and other measures of system performance).

Purpose and Outline

The purpose of this White Paper is to explain how GoldSim can be used for reliability modeling and
probabilistic risk assessment. The document is longer than the typical White Paper, as the objective is
not just to describe GoldSim in simplified, broad terms (i.e., “arm-waving” that provides very little
insight), but instead to provide sufficient detail such that the reader can obtain a good understanding
and overview of what the software can actually do (and how it does it). Because GoldSim is very
powerful and flexible, doing so requires more than just a few pages (although this document contains
lots of screen captures, so it is not as long as it might seem). Note, however, that the paper does not
attempt to teach you how to actually use the software; it is intended to simply clearly explain its
capabilities in simple language. Readers interested in learning more details are pointed to additional
sources of information at the end of the paper.

In order to illustrate how GoldSim can be used for reliability analysis and probabilistic risk assessment,
the document is organized as follows:

e How is GoldSim Different from Traditional Approaches? First we provide a very general overview
of how GoldSim differs from traditional approaches to reliability modeling and probabilistic risk
assessment.

e Basic GoldSim Concepts. In order to demonstrate how GoldSim can be used for reliability
modeling and probabilistic risk assessment, it is first necessary to provide a brief overview of the
basic concepts underlying simulation modeling in general, and more specifically, the GoldSim
simulation framework.

e GoldSim’s Approach to Reliability Modeling. After obtaining an understanding of basic GoldSim
concepts, it is then possible to illustrate how GoldSim can be used for reliability modeling. This
is done by showing a number of example models.

e GoldSim’s Approach to Probabilistic Risk Assessment. This builds upon the previous section to
illustrate how GoldSim can be used for probabilistic risk assessment. Several aerospace case
studies are discussed to illustrate the key concepts.

e Summary. The document will conclude with a brief summary and a description of ways in which
you can learn more about GoldSim.
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How is GoldSim Different from Traditional Approaches?

When discussing how GoldSim differs from other approaches, it is useful to differentiate reliability
modeling from probabilistic risk assessment. GoldSim can be used for both types of analyses. With
traditional approaches, however, these two types of analyses use different types of tools (since they are
focused on different types of results).

Traditional Approaches to Reliability Modeling
It is assumed that the reader is familiar with traditional reliability modeling approaches. Ebeling (2009) is
a good introductory text that discusses these approaches.

Most traditional reliability modeling approaches involve the assumption of a static model, where the
system configuration never changes (other than due to the failure/repair of components), and where its
properties don’t change with time. This is a convenient assumption, as it allows the use of simple
techniques, such as closed-form mathematical equations or reliability block diagrams. Markov chains
are another traditional reliability approach, and although they introduce an element of dynamism, the
system itself (and its properties) cannot change with time. Because of the simplifying assumptions
required to use these conventional techniques, they may be inappropriate for some kinds of systems.

Some of the difficulties with using these approaches for complex systems are summarized below:

Closed-Form Equations. These methods are heavily dependent on classical models (i.e., they have
been primarily developed for use with standard failure distributions like the Exponential and
Weibull). Even if failure data can be fitted to a standard distribution, it is difficult to model complex
systems with closed-form equations. For example, if a system has two Weibull failure modes, they
cannot be algebraically combined into a single Weibull failure mode for use with the Weibull
reliability equation.

Reliability Block Diagrams/Closed-Form Solutions. Reliability block diagrams can be used to
formulate closed-form solutions when modeling many systems of components. Such models,
however, are static, assume the system is in steady state, and do not account for the highly dynamic
nature of many systems. Moreover, unless (simplistic) correction factors are used, the approach
assumes that all of its components are independent.

Markov Chains. Markov chains enumerate a number of system “states” and the probabilities for
transitioning between these states and can be used to represent systems that cannot be handled
using reliability block diagrams and closed-form solutions. However, the number of transition
probabilities (and the computational effort) required to solve a Markov chain grows exponentially
with the number of states. Because of this “state-space explosion”, in many cases a system must be
greatly simplified in order to use a Markov chain approach.

Of course, the conventional approaches are appropriate for many systems, particularly when employed
by an experienced practitioner. However, as we will discuss below, in some cases a more realistic
reliability model may be required.

Traditional Approaches to Probabilistic Risk Assessment for Engineered Systems
Risk assessment is a very broad field, utilizing a variety of quantitative approaches. In the current
context, however, we are primarily concerned with risk assessment of complex engineered systems
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(e.g., nuclear power plants, infrastructure such as dams, and space and defense systems) that are
composed of highly-reliable and frequently redundant components, which in most cases are required to
have an extremely low risk of a catastrophic failure.

The conventional approach to risk assessment for such systems focuses on the analysis of initiating
events and subsequent event sequences that could lead to failures, and on enumerating and calculating
the probabilities of different outcomes through logic-based procedures (e.g., event trees/fault trees).
Stamatelatos et al. (2011) and Vesely et al. (2002) provide good descriptions of these approaches.

For many types of systems (e.g., nuclear power plant probabilistic risk assessments), these approaches
work well. However, systems that are highly dynamic and/or have complex dependencies among failure
processes may be difficult to realistically represent and/or may require a tremendous amount of
preprocessing effort when using event tree/fault tree approaches.

As a result, an approach like GoldSim's that facilitates explicit representation of complex dynamics
potentially provides a powerful complement to existing methods.

L'j'ﬂ' Note: Stamatelatos et al. (2011) is the latest version of NASA’s Probabilistic Risk
Assessment Procedures Guide for NASA Managers and Practitioners. In addition to discussing
traditional logic-based procedures in detail, it also briefly discusses simulation-based
approaches, and in fact, presents an example using GoldSim. Mattenberger et al. (2015)
provides a comparative analysis of a simulation-based approach to PRA (specifically using
GoldSim) to traditional approaches (for crewed spacecraft missions).

The GoldSim Approach to Reliability Modeling and Risk Assessment

GoldSim is a general purpose dynamic, probabilistic (Monte Carlo) simulator. Dynamic simulation allows
the analyst to develop a representation of the system, and then observe that system’s predicted
performance over a specified period of time.

The primary advantages of dynamic probabilistic simulation are:

e The system can evolve into any feasible state and its properties can change suddenly or
gradually as the simulation progresses.

e The system can be affected by random processes, which may be either internal (e.g., failure
modes) or external (e.g., environmental).

e If some system properties are uncertain, the significance of those uncertainties can be
determined.

In a dynamic, Monte Carlo simulation, the dynamic behavior of the system (e.g., evolving environment,
various failures and repairs, system performance) is simulated many times. These multiple results
(referred to as realizations of the system) can then be combined to provide not only a mean, but also a
range on the performance of the system. In addition to the statistical results these realizations provide,
multiple realizations may also reveal failure modes and scenarios that may not be apparent, even to
experienced risk and reliability modelers.

In addition to providing a more accurate representation of uncertainty, GoldSim also allows you to
readily create a more detailed and accurate representation of your system than can be achieved with
even the most sophisticated risk and reliability methodology.

4
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With GoldSim, you can:

Model the external environment: Because GoldSim is a general purpose simulator, the environment
in which the system operates can be readily modeled, and can affect and interact with the system.

Model components that have multiple failure modes: GoldSim allows you to create multiple failure
modes for components, each of which can either be defined by a distribution or occur when a
specified condition arises. Failures which occur according to a distribution do not have to use time
as the control variable. For example, a vehicle might use mileage to define failure, while an aircraft
might use the number of cycles.

Model complex operating rules. Components can be specified to turn on and off according to a
fixed schedule and/or in response to external events. This allows accurate calculation of availability,
and can also affect failures (since failures based on distributions can choose, among other things, to
use total time or operating time as the control variable).

Model complex interdependencies: In addition to providing a logic-tree mechanism to define
relationships (e.g., the power supply must be operating in order for the rest of the system to
operate), GoldSim also allows you to model the more subtle effects of failure on other portions of
the system. For example, you can easily model a situation where the failure of one component
causes another component to wear more quickly. You can also easily model non-fatal failures (i.e.,
failure modes that only partially degrade the performance of a component).

These features and capabilities provide a powerful engine for realistically modeling the risk and
reliability of complex engineered systems.

In the remainder of this document, we will explain in more detail (using example models) how GoldSim
can be used to represent such systems.
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Basic GoldSim Concepts

Before describing how GoldSim can be used for reliability modeling and risk assessment, it is first
necessary to provide a brief overview of the basic concepts underlying simulation modeling in general,
and more specifically, the GoldSim simulation framework.

Simulation Concepts

GoldSim carries out dynamic, probabilistic simulations. The term “simulation” is used in different ways
by different people. As used here, simulation is defined as the process of creating a model (i.e., an
abstract representation or facsimile) of an existing or proposed system (e.g., a business, a project, an
organization, a facility, an ecosystem, a mission, a machine) in order to identify and understand those
factors which control the system and/or to predict (forecast) the future behavior of the system. Almost
any system that can be quantitatively described using equations and/or rules can be simulated.

In a dynamic simulation, the system changes and evolves with time (in response to both external and
internal influences that the analyst specifically defines), and your objective in modeling such a system is
to understand the way in which it is likely to evolve, predict (forecast) the future behavior of the
system, and determine what you can do to influence that future behavior. That is, the purpose of a
dynamic simulation is typically to predict the way in which the system will evolve and respond to its
surroundings, so that you can identify any necessary changes that will help make the system perform
the way that you want it to.

A probabilistic simulation recognizes that the controlling parameters, processes and events for any
system you are trying to simulate may not be able to be predicted with certainty and/or may not be well
understood, and it therefore attempts to represent this uncertainty explicitly and quantitatively. In this
regard, there are two fundamental types of uncertainty that it is important to distinguish between and
represent:

1) thatdue toinherent (temporal) randomness (e.g., a stochastic process); and
2) that due toignorance or lack of knowledge.

Failures are a classic example of the first item: we may be able to describe failures statistically, but when
the actual failures occur is inherently random. On the other hand, the second item reflects the fact that
in some parts of our system, we may simply have a lack of knowledge regarding a particular variable
(e.g., the strength of a material, or the properties of a soil).

GoldSim is able to represent both types of uncertainty. It does this by quantitatively representing the
uncertainty in inputs (e.g., using distributions describing failure rates, the rates of other events, and the
uncertainty in key variables). Uncertainty in inputs is propagated to the uncertainty in the outputs using
Monte Carlo simulation. In Monte Carlo simulation, the entire system is simulated a large number (e.g.,
1000) of times. Each of these simulations is referred to as a realization of the system. For each
realization, all of the parameters described by distributions are “sampled” (for distributions representing
failure rates or other stochastic processes, multiple times). The system is then simulated through time
such that the outputs of the system can be computed. This results in a large number of separate and
independent results, each representing a possible “future” for the system (i.e., one possible path the
system may follow through time). The results of the independent realizations are assembled into
probability distributions of possible outcomes.
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What is GoldSim?

Let’s walk through a very simple example that illustrates these concepts. GoldSim is essentially a high-
level programming language for building simulation models (but does not require you to be a computer
programmer). It is highly-graphical and object-oriented, such that you create, document, and present
models by creating and manipulating graphical objects representing the components of your system,
processes, data and relationships between the data:

Capacity \

o
O]

Inflow /I;" Pond W
/ Il ||
«
!

Pumping_Rate _f.;:
Leakage

The simple model above has five objects: Capacity, Inflow, Pond, Leakage and Pumping_Rate. Each of
these objects represents a feature (e.g., a pond), a parameter or property (the capacity of the pond), or
a process or event (inflow and leakage from the pond). The objects representing features, parameters,
processes, and events in GoldSim are called elements. The purpose of this particular model is to predict
the volume of water in the pond as a function of time, accounting for specified inflows and outflows.

;"'ﬂ' Note: This particular example intentionally does not model failures (e.g., which could
affect the pumping rate); we will address that in subsequent sections. Here we will simply use
this example to illustrate the fundamental concepts of dynamic, probabilistic simulation.

Elements are the fundamental building blocks of a GoldSim model, and each type has a particular
symbol or graphical image by which it is represented on the screen. You give each element a unique
name by which it is referenced. GoldSim provides a wide variety of elements (over 50), each of which
serves a different purpose. Some of these elements simply provide a mechanism for the user to enter
input data into the model (e.g., Capacity, Pumping_Rate). Other elements represent functions which
operate on one or more inputs and produce one or more outputs (e.g., Leakage). Some elements
represent uncertaint parameters or stochastic processes (e.g., Inflow). And other classes of elements are
relatively complex and generate the internal dynamics of a model. In this simple model, the element
Pond serves this purpose.

In particular, the element named Pond (referred to in GoldSim as a Reservoir) integrates material flows
over time. In this case, the material is water. The Reservoir element solves a time integral: it integrates
the inflows and outflows, and by doing so in this case computes the volume of water in the pond at any
time in the simulated future.
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As pointed out, as a general rule, each type of element in GoldSim has one or more inputs and produces
one or more outputs. Each element has a properties dialog where the inputs are entered. The
properties dialog for the Reservoir element representing the Pond looks like this:

Reservoir Properties : Pond X

Definition
Element ID: | Pond| | Appearance. ..
Description: The volume of water in the pond
Display Units: |m3 Type... | Scalar
Definition:
Initial Value: |[3-[J m3
Lower Bound: |D.D m3
Upper Bound: |Ca|:|a-:it-,'
Additions:
Rate of Change: |1”ﬁ0'-'-
[ Discrete Change: |
Withdrawal Regquests:
Rate of Change: |Leakage + Pumping_Rate
[ piscrete Change: |
Save Results
Final Values Mante Carlo Histories
Cancel Help

Note that when you link one element to another (e.g., by referencing another element in an input field
as shown above), GoldSim automatically draws an arrow (referred to as an influence) between the
elements. The influence visually indicates the dependency of one element on another. In the example
above, the influences indicate that:

e Pondis influenced by (i.e., is a function of) Capacity, Inflow, Leakage and Pumping_Rate.
e Leakage is influenced by Pond (which forms a feedback loop between these two elements).

One of the more unique and powerful features of GoldSim is that the program is dimensionally aware.
GoldSim has an extensive internal database of units and conversion factors. You can enter data and
display results in any units. For example, you could add meters and feet in an equation, and GoldSim
would internally carry out the conversion. Note, however, that if you tried to add meters and hours,
GoldSim would issue a warning message and prevent you from doing so.

When elements are created, you must specify their output dimensions. When elements are linked,
GoldSim ensures dimensional consistency and carries out all of the unit conversions internally. In this
particular example, the Pond has Display Units of a volume (m3). As a result, GoldSim expects the
Upper Bound (Capacity) to have dimensions of a volume, and the Rate of Change (Inflow, Leakage and
Pumping_Rate) to have dimensions of volume per time. If they did not, GoldSim would display an error.
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Running a Model

Systems that are changing with time are described mathematically using differential equations. In the
simple example shown above, we have only a single variable (the volume), so this can be described
using an ordinary differential equation as follows:

d T
— = Inflow - Outflow
dt

To write this in terms of the volume, we take the integral:
Vit)=V(0) + J‘ (Inflow - Outflow) dt
o

To solve for the volume as a function of time, we need to solve this integral. In simple systems (e.g., if
the flows were constant), we can solve this analytically. For almost any real system that you would be
interested in modeling, however, an analytical solution is not available. Therefore, a dynamic simulator
like GoldSim must solve such equations numerically (by computing an approximate solution). This is
what the Reservoir element does.

To solve this (or any) integral numerically, it is necessary to discretize time into discrete intervals
referred to as timesteps. GoldSim then “steps through time” by carrying out calculations every timestep,
with the values at the current timestep computed as a function of the values at the previous timestep.

Hence, in order to dynamically simulate a system in GoldSim, you must specify the duration of the
simulation (e.g., 1 year) and the length of the timestep (e.g., 1 day). GoldSim provides a flexible dialog
for specifying how it steps through time:
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Simulation Settings...

Time  Monte Carlo  Globals Information

( ]__'!'\ Spedfy timestepping options for the model.

Show Scheduled Updates...
Basic Settings

Time Basis: Elapsed Time ~ Time Display Units: |day ~

Duration: 100 day

Start Time: |1z,r 1/2018 Dv||1z:oo:oo.em z

-

End Time: 3/11/2019 ||12:.3.3:.3.3 AM 2

Timestep Settings

Alignment: Start Time aligned w

Basic Step: User-spedified ~

Reporting Steps:

Mone LY N_-'.J:\ N.-'.P:\.
Major Minar
Save Results: | Basic Steps w | Saveevery | 1 : Basic Steps

o 101 scheduled update times, 101 saved
Result Size: 39.5 KB histories, 3.61 KB final values [ Advanced..

Cancel Help

There are two ways to carry out a dynamic simulation in GoldSim (specified by selecting the Time Basis
in this dialog):

e Inan “Elapsed Time” simulation, you specify a simulation Duration. The simulation is then
tracked in terms of the elapsed time since the simulation began.

e Ina “Calendar Time” simulation, you enter a Start Time and an End Time, and the simulation is
tracked in terms of the calendar date/time (i.e., GoldSim tracks things like what hour of the day,
day of the week and month it is during the simulation, and you can explicitly refer to these in
the simulation).

If the simulation you want to run is very short (e.g., minutes or hours) or very long (e.g., hundreds of
years), in most cases an Elapsed Time simulation would be appropriate. However, when your simulation
duration is between these two extremes, it is quite possible that you will want to run a Calendar Time
simulation. This is because some inputs, or the behavior of the system itself, might depend on the time
of day or the date (i.e., parameters may have diurnal and/or seasonal patterns), and hence you will want
to specifically track and reference this information in your model .

10



Basic GoldSim Concepts

L;ﬂ' Note: To ensure that the numerical approximations in a dynamic simulation are accurate,
a sufficiently small timestep must be used. The appropriate timestep length is a function of how
rapidly the system represented by the model is changing: the more rapidly it is changing, the
shorter the timestep required to accurately model the system. It is important to note, however,
that the actual timestep length in a simulation is not necessarily constant, and in fact, when
simulating events (such as failures), GoldSim automatically inserts timesteps in order to
accurately simulate them. That s, if an event occurs at a particular time, GoldSim can interrupt
the simulation and update the model. For example, consider a failure that occurs 12.54 days
into the simulation, and is repaired 0.72 days later. The simulation would be updated (i.e., a
timestep would be inserted) at 12.54 days to reflect the failure, and would subsequently be
updated at 13.26 days to reflect the repair. This allows GoldSim to model such systems without
an inordinate level of computational effort.

If you are running a probabilistic simulation, you must also specify how many realizations of the model
you would like to run:

Simulation Settings... *

Time  Monte Carle  Globals  Information

Define Monte Carlo options to carry out a probabilistic simulation,
and specify the sampling method for Stochastic variables.

(@) Probabilistic Simulation

# Realizations: | 100 = Result Options. ..
[Jrun the following Realization only: 1 =
Use Latin Hypercube Sampling Use random points in strata ~

Repeat Sampling Sequences Random Seed:

[[] spedify Realization Weights:

S e Ny I e e

Displaying Basic Simulation Results
After running a model, GoldSim can generate and display different types of results, in either graphical or
tabular form. The most common results viewed are time history results and distribution results.

A time history result simply shows how a model output is predicted to change with time. As such, it is
the fundamental type of result produced by a dynamic simulation model. The x-axis is elapsed time (or
date/time) and the y-axis is the value of the output. Here is an example of a simple time history for our
pond model:

11
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il Pond History
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This is the plot of a single realization. In a probabilistic model, we run multiple realizations (each
representing a possible future). Here we show 100 realizations:

|I Pond History

flicrat [T Table Display:| Al Realizations ~ ol Cg

welume in Pond (m3

0 10 20 30 40 50 60 70 80 90 100
Time (day)

A more useful way to display multiple realizations (i.e., a probabilistic time history result) is to display it
in the form of percentile bands:

12



Basic GoldSim Concepts

il Pond History
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A distribution result shows a probability distribution of an output at a specific point in time (e.g., the
end of the simulation):

Distribution (m3)
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Here we are displaying the result in terms of a cumulative distribution function (CDF). The y-axis shows
the probability of not exceeding the value on the x-axis. So in this example, if we look at an x-axis value
of 100 m3, we see there is about a 60% chance that volume at the end of the simulation will not exceed
that value (and hence a 40% chance that it will exceed that value).

Modeling Events

Use of GoldSim for modeling reliability and risk assessment requires a basic understanding of one set of
powerful features in GoldSim: discrete event modeling.

When things move through or change within a system, the dynamics can be conceptualized in two
different ways: continuously or discretely. Things that move continuously can be thought of as flowing.
An example of this is the movement of water. Other things move or happen discretely or
instantaneously (e.g., such that they must be tracked individually). Examples of this include financial
transactions, the movement of items through a factory, and, of course, failures and repairs.

The example we discussed above dealt only with continuous dynamics (the flow of water). It is
important to understand, however, that GoldSim provides powerful capabilities for representing
discrete dynamics as well. In fact, most real-world systems are best described using a combination of
continuous and discrete dynamics (i.e., hybrid systems). And because failures and repairs are discrete
events, the ability of GoldSim to properly handle these is critical.

GoldSim allows you to represent “instantaneous” changes to a model by providing a mechanism for a
model to generate and respond to events. This is accomplished by 1) providing the ability to generate
events in a number of different ways, and 2) allowing such events to instantaneously trigger various
elements to take a particular action (e.g., instantaneously change their value).

In GoldSim, an event can be generated in one of five ways:

The event occurs when a specified condition (e.g., X > Y) becomes true or false;

The event occurs when a specified output in the model changes;

The event occurs at a specified calendar or elapsed time;

The event occurs based on a specified rate of occurrence, which can be treated as regular or

HpwwNPR

random ("occur exactly once a week" or "occur, on average, once a week"); or
5. The event occurs (failures and repairs) based on specified failure models, conditions and
interdependencies.

Once an event is generated, a variety of GoldSim elements can be triggered by the event, with each
element responding to the event (taking a particular action) in a different manner. The ability to
superimpose the effects of events (such as failures) on continuously varying systems (in order, for
example, to model consequences) is one of the most powerful features of GoldSim.

Building Large, Hierarchical Models

Although some GoldSim models are very simple (such as the simple example above), consisting of a
small number of elements, complex GoldSim models can have hundreds or thousands of elements. In
order to manage, organize and view such a model it is useful (in fact, essential) to group the elements
into Containers. A Container is simply a collection of elements.
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A Container can be thought of as a "box" into which other elements have been placed. In a sense, it is
like a directory folder on your computer. The elements inside the Container can be thought of as a “sub-
system” of your model. Containers can be placed inside other Containers, and any number of levels of
containment can be created. This ability to organize model elements into a hierarchy provides a
powerful tool for creating "top-down" models, in which the level of detail increases as you "drill down"
into the containment hierarchy.

The example below shows a system that has been divided into a number of distinct sub-systems:
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< >

| B &
Maintenance_Records Pump Motor Controller

[% Containment View [-:Y.CIass View < >

Editing 10000 - —4b— + .

All of the elements with a small triangle in their upper left-hand corner are Containers. Clicking on the

triangle allows you to drill down into (i.e., enter) that Container to see more details. The hierarchy and
contents of the Containers are shown in the tree structure on the left side of the screen. The elements
inside a particular Container are shown on the right side of the screen.

L_’ © Note: As we will see below when we discuss how GoldSim models failures in reliability and
risk assessment models, Containers play a critical role in representing systems of components.

The ability to create sub-systems using Containers provides a powerful capability: the reuse of sub-
systems. A user can create a complex sub-system, and then document and save it, such that a
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subsequent user could simply drop the sub-system into a new model. This facilitates the creation of a
library of documented and verified sub-systems. Such a library can be used to quickly and efficiently
build complex models.

Building Transparent, Well-Documented Models
A key feature of any modeling tool is how well it allows you to document and explain your model.
Properly documenting your model is critical for three important reasons:

e Many models have a long lifetime. As a result, you will often need to revisit and make
modifications to a model many months (or years) after you last used it. If the model is not well
documented, you will need to waste time coming back up to speed with the model in order to
understand it well enough to use the model and make any modifications that are necessary.

e Many models are either built by multiple people, or pass from one person to another over time.
In order for others who need to work on the model to do so effectively, it must be well
documented.

e Most models that an analyst builds are actually built for someone else (e.g., a manager, a client,
a regulator, some other stakeholder). Although it may not be necessary for them to understand
all of the technical details of a model in order to use it, in most cases it is necessary for them to
understand the basics of what the model is doing. A model which cannot be easily understood is
a model that will not be used or believed. A well-documented model is more likely to be used
by the stakeholders for whom it was built.

As a result, GoldSim was specifically designed to allow you to effectively document, explain and present
your model directly inside of the model itself. You can add graphics, explanatory text, notes and
hyperlinks to your model:
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Lunar Base Subsystems

The lunar base described in the PRA guide has a number of subsystems - specifically an Environmental Control System, a Command and Control
system, a Power Generation system, a Communication system and Scientific Instruments.

In order for the base to be habitable, the Environmental_Control_System, Command_Control system, Power_Generation system, Communication,
must operate continuously. Some scientific instruments can be repaired if damaged, but others are irreplaceable, and their loss will trigger the Loss
of Mission endstate.

E|.d .dm E|.d .dm E.dE!
Environmental_Control_System Command_Control Power_Generation Communication  Science_Instruments

A

Initiating Events

ey

Smoldering_Event

There are a number of initiating events
described in the PRA guide - these are
events which could lead to the two
undesirable end states (loss of mission or

To Loss of Crew End

loss of crew). > State
The initiating events that can affect To Event Tri d
multiple base systems, or that require & 0 Event Triggere

failures of mutiple systems are located in Atmospheric_Leak Failure Mode

this level of the model. A shortcut is R e

provided to the Electrolyte Leakage N U=tz
Initiating Event, which primarily affects the
Power_Generation and Science_

Instruments subsystems. [
Energetic_Hazard

Shortcut to Electrolyte Leakage Initiating Event

GoldSim's powerful documentation and presentation abilities, coupled with the ability to create
hierarchical, top-down models, allows you to effectively describe and explain your model at different
(and appropriate) levels of detail to different audiences.

Summary

The purpose of this section was to provide a very short introduction to the basic concepts upon which
GoldSim is based. This overview, although very brief, provides sufficient background information for us
now to describe in some detail how GoldSim can be used for reliability modeling and risk assessment.

17



GoldSim’s Approach to Reliability Modeling

GoldSim’s Approach to Reliability Modeling

In this section, we will describe in some detail how GoldSim can be used for reliability modeling. We will
start by describing some very simple problems, and will progress to describing a number of more
complex situations. GoldSim is a very powerful tool, and hence not all of GoldSim’s features will be
described. However, the simple examples that are shown should provide a good indication of GoldSim’s
range of capabilities.

In particular, we will discuss the following topics:

e Modeling Simple Failures

e Modeling Multiple Failure Modes

e Modeling the Reliability of Systems

e Modeling Repairs, Replacement and Preventive Maintenance

e Modeling Complex Interdependencies and Dynamically Changing Systems
e Modeling the Consequences of Failure (System Performance)

The first step to modeling reliability in GoldSim, as it is in any other reliability and risk analysis modeling
methodology, is to develop a model of the system of interest with all of its components. In GoldSim, the
building blocks used to represent the components of the system are two specialized elements: the
Function element and the Action element:

E B

Function_Element Action_Element

Function elements are used to model components which operate continuously once turned on. Typical
examples of components modeled by Function elements include pumps and engines. Action elements
are used to represent components which must respond to a control command or condition. Typical
examples of components modeled by Action elements include switches and relays. Both element types
can fail, as well as be repaired and maintained.

Modeling Simple Failures

We will begin by considering the simplest case possible: a component that has a constant failure rate
(i.e., an exponential failure distribution). The reliability of such a simple component can be described
using a simple closed-form equation. In fact, the reliability (i.e., the probability that the component will
perform its required function over a specified time period t) can be written as follows:

R=e™
where A is the constant failure rate. It can also be shown that the mean time to failure (MTTF) is equal to
1/\.
So, as an example, let’s consider a component with a failure rate of 0.0003 failures per operating hour.
The reliability over a 300-day continuous operating period would then be:

o (0003 hr=1)(300 days) (24 1=

R=e M= day)= 0,115
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The MTTF would be 3333 hr = 139 days.

So how would we model this in GoldSim? We first specify in GoldSim how the component can fail. The
component is represented by a Function element that looks like this:

Reliability Function Component Properties : Simple_Component

Definttion  Results

Element 10 |m Appearance...

Description: Componet that fails with a constant failure rate
(Exponential distrbution)

Component Status Control & Failure Modes

lUse simple failure rate instead of failure modes
Failure Rate: |ﬂ-ﬂﬂﬂ3 hr-1

[] Use Importance Sampling for this element
Initial Status is ON Tum on.... Tum off .. Replace...
[] Model this Function component as a system with child elements

Operating Reguirements
Logic4ree represents a: | Requirements4ree 3= X )/.
4 | -8 Edemal Requiremerts

Define operating Resource Requirements: O Resources

Save Results
Final Values Monte Caro Histories

Cancel Help

The Function element dialog has lots of options (and we will discuss some of them later), but in this
case, there are only two fields that are of interest:

e Use simple failure rate instead of failure modes: This instructs GoldSim to assume a simple
exponential failure distribution.

e Failure Rate: This is the rate of failure (i.e., the A term in the equations above). Note that this
also represents the (constant) hazard rate.

Once the Function is defined, we can simulate the system. What we are going to do is run the model for
the operating period of interest (300 days). During the simulation, GoldSim samples the failure
distribution and determines when the component fails. Of course, the failure distribution represents the
inherent randomness (i.e., the stochastic nature) of failure, so we will need to run a Monte Carlo
simulation with multiple realizations to see how the component will perform statistically. In this
example, we will run the model for 1000 realizations.
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One of the basic outputs of the Function element is its Status at any given time. This is indicated by a
number. For example, a status of 0 indicates that the component is operating. A status of 2 indicates
that for one or more reasons, it is not. Here is a time history plot of a single realization (realization #6 of
1000) for the status for this component:

| History 1

flichat [ Table  Display: | Realization ~ #: Halr 5

20

1.5

1.0

Status

0.5

0.0
0 100 200 300

Time (day)

This indicates that for this realization, the component failed at just past 200 days. Given a MTTF (based
on the closed-form solution) of 139 days, such a failure time is reasonable. Although as we will see later,
the status of a component is very useful (e.g., we can reference it in order to realistically model complex
dependencies), what we are interested in for this example are the traditional statistical reliability
metrics. By collecting all of the realizations together, GoldSim automatically does so. Here are the
statistical results of the simulation of this component:

Reliability Function Component Properties : Simple_Component (Res...

Definttion ~ Resutts
Summary
Results for 1000 realizations with mean duration of 300 day.
Measure Confidence Bounds
3% Mean 95%
Operational Availability: 03927 0.4096 04254
Inherent Availability: 0.3827 0.4096 0.4254
Reliability: 0.0584 0.1150 01316
Analysis Options
Enable
Causal Analysis Results: Display
Failure Times Results: Display
Repair Times Results: Display
[] Participate in global export of reliability resutts
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Note that the Reliability is computed as 0.115 (consistent with the closed-form solution). The
confidence bounds indicate the uncertainty in this estimate (due to the number of realizations). We’'ll
wait to discuss the Availability results until we consider repairs. If we press the Failure Times Results
button GoldSim displays the following result:

Distribution of Time to Failure for 'Simple_Component'

Percenties ah. eOF |l coF | .. ccoF []confidence Bounds
Cumulative Probability Value
0.001 0.19559 day
0.01 1.3985 day 1.0
0.05 7.1677 day
0.1 14,637 day 0.8
0.25 39.891 day 2
0.5 96,231 day E 06
0.75 192,52 day 5
0. 318,35 day B o
0.95 415.01 day L
0.99 638.67 day 02
0.999 948, 14 day
0.0 - ' —
o 200 400 500 200 1000
Statistics Time (day)
Statistic Value
Mumber of Samples 995 Calculator
Mza;l Corfdencs Bane ﬁg j:: Cumulative Probability: Value (day):
95% Confidence Bound 145.85 day 0.5 -7
Standard Deviation 135.66 day
Skeuwness 1.8003 Probability Density: 0.0033181 1/day
Kurtosis 4,2243
Conditional Tail Expectation:  234.92 day

This is the simulated distribution of failures. The plot on the right is the CDF of the failure distribution.
We could press the CCDF button to display the complementary cumulative distribution function (which
is also referred to in this case as the reliability function):

1.0
0.8

0.6

0.4

Fraction unfailed

0.z

0.0

0 200 400 600 200 1000
Time (day)

If you look at the Statistics portion of the dialog, you will note a Mean (i.e., the MTTF) that is consistent
with the closed-form solution (i.e., 139 days).
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Modeling Multiple Failure Modes
Now that we have discussed this trivial case, let’s make it a bit more complicated. We will do this in two
ways:

e The component can fail due to multiple modes.

e The failure modes are time-dependent. That is, unlike the exponential failure, which is
memoryless, the time to failure for a particular mode is a function of how long the component
has been operating (i.e., the failure rate is not constant).

If we make the further assumption that the failure modes are independent and of a particular form,
such a system can still be solved using closed-form equations (the Reliability function can be computed
as the product of the Reliability function for each mode). However, in this example, we will use two
distributions (the Normal and LogNormal) that actually do not have closed-form solutions (although
there are techniques using statistical tables to solve for these). So we won’t bother to walk through the
traditional calculations. Rather, we will just show how this is represented in GoldSim.

This example assumes three independent failure modes described using the following distributions:

e Weibull: Characteristic life = 1000 hrs; Shape factor (slope) = 2
e Normal: Mean life = 1200 hrs; Standard deviation = 200 hrs
e LogNormal: Mean life = 1000 hrs; Standard deviation = 100 hrs

The main page of the Function element representing the component looks like this:
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Reliability Function Component Properties : Component

Defintion  Failure Modes  Results

Element 1D:

Qmpa Appearance ...

Description: Componet that fails due to multiple failure modes

Component Status Control & Failure Modes
[ Use simple failure rate instead of failure modes
Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
Initial Status is ON Tum on.... Tum off .. Replace...
[] Model this Function component as a system with child elements

Operating Reguirements
Logic4ree represents a: | Requirements4ree 3= X >/'

4 | -8 Edemal Requiremerts

-[&) Intemal Requirements

> ~Failed[1] {Mode X: Weibull)
ifi>= ~Failed[2] (Mode Y: Nomal)

] > ~Failed[3] {Mode Z: LogNomal)

Define operating Resource Requirements: O Resources

Sawe Results
Final WValues Morte Caro Histories

Cancel Help

Note that the checkbox labeled Use simple failure rate instead of failure modes is cleared. As a result,
a Failure Modes tab is available. This is where we define the three failure modes:
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Reliability Function Component Properties : Component

Defintion  Failure Modes  Results
Failure Models)

1} Type Description ~
Weibull -
1 | Characteristic life & |Mode X: Weibull
slope factor
2 |Mormal Mode ¥ Mormal
Loghlormal - Mean .
3 and S0, Mode Z: LogNormal
v
Add... Remove
[ import failure modes — Part 1D: I:l Import Mow
Advanced failure mode control varable options: Settings...

Failure Mode Parameters

Characteristic Life: Slope factor:
|1[H}D hr 2

[] Automatically repair failures

Delay distribution type: Bxponential A

Mean delay time until repaired:
0.0k |

Specify resources required to repair: O Resources...

Cancel Help

In this case, the first failure mode (the Weibull) is selected, so the Failure Mode Parameters section of
the dialog shows the inputs for that mode. The inputs for the other two modes could be accessed by
selecting them at the top of the dialog.

Dﬂ' Note: In a real model, we would not enter the parameters directly here as numbers.
Rather, we would define other elements and reference the element names here. If we were
uncertain about the parameters, we could define them as probability distributions to represent
this uncertainty.

L_’ © Note: By specifying multiple failure modes (e.g., early failures, random failures and wear
out failures) and taking advantage of some advanced dynamic failure mode features, you can
readily represent a “bathtub” failure curve.

If we run this model (again, for 300 days and 1000 realizations) and look at the results, the combined
failure distribution looks like this:
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Distribution of Time to Failure for 'Component’

Percenties ah. eOF |l coF | .. ccoF []confidence Bounds
Cumulative Probability Value
0.001 26.891hr
0.01 98.928 hr 1.0
0.05 226.49 hr
0.1 324.91hr 0.8
0.25 535,38 hr F
0.5 808.53 hr E 08
0.75 957.79 hr 5
0.9 1028.7 hr B o4
0.95 1084.1hr L
0.99 1159.6 hr 02
0.999 1225.4hr
0.0
o 200 400 600 200 1000 4200 1400
Statistics Time (hr}
Statistic Value
Mumber of Samples 1000 Calculator
Mean 736.64 hr . .
Soi Corae 355 56 b Cumulative Probability: Value (hr):
5%, Confidence Bound 750.72 hr 0.5 <->
Standard Deviation 270.4hr
Skewness 0.60264 Probability Density: 0.0011682 1/hr
Kurtosis -0.63215
Conditional Tail Expectation:  959.95 hr

Note the rather complex shape. Note also that the MTTF is less than the mean of any of the individual
modes.

More interestingly, we can view a root cause analysis for the component to see which modes cause
failures:

25



GoldSim’s Approach to Reliability Modeling

Causal Analysis for 'Component’
Define Analysis Summary
(") Display Unique States
(®) Display Root Causes States:
Sort by: 5 ?ntp;:ﬁ:g
(®) Time in State

(") Dceurrence Count
Plot 'Operating’ State

Cause Analysis

k B- Failed - Int. Requirement (6463.37 hr, 83.8%)
¢ bejlse oFailled[1] (Mode ¥: Weibull) (4012.5 hr, 55.7%)

Ey| il ~Failed[3] (Mode Z: Loghormal) (1880.41 hr, 26.1%)
¢ Ll ~Failed[7] (Mode Y: Normal) (570,454 hr, 7.92%)

e Bl Component Operating (736.633 hr, 10.2%:)

This indicates that 56% of the failures were due to the Weibull failure mode, 26% were due to the
LogNormal failure mode, and 8% were due to the Normal failure mode.

Modeling the Reliability of Systems

In the examples we have just discussed, we were considering a single component. Of course, in the real
world, systems consist of multiple components (e.g., a computer system consists of multiple
components, such as a hard drive, a power supply and a CPU). Depending on the configuration of the
components in the system (i.e., the system dependencies), a failure in one component may or may not
result in the failure of the system. The various configurations can be illustrated in the form of reliability
block diagrams. In traditional approaches, depending on the complexity of the configuration and
assumptions (e.g., independence), it may be possible to solve for these using closed-form solutions.
WEe'll consider several reliability block diagrams below, and illustrate how GoldSim can very readily
represent any configuration.

Serial Systems
Let’s first consider the following simple system consisting of three components in series:

— -

In this configuration, Component B requires Component A to be operating and Component C requires
Component B to be operating. Hence, all components must function for the system to function.
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Let’s further assume that each component fails according to a single mode:

e Component A: Weibull distribution with Characteristic life = 1000 hrs and Shape factor = 2

e Component B: Normal distribution with Mean life = 1200 hrs and Standard deviation = 200 hrs

e Component C: LogNormal distribution with Mean life = 1000 hrs and Standard deviation = 100
hrs

To represent systems in GoldSim, we are going to take advantage of a capability we discussed earlier in
this paper: the ability to create sub-systems using Containers. This capability makes it very easy for
GoldSim to represent any kind of system configuration in an intuitive manner.

The GoldSim model for this consists of four elements: a Function element representing the entire
system, and a Function element for each component. We first create a Function element and instruct
GoldSim to treat it as a system (i.e., a Container):

Reliability Function Component Properties : Systern

Definition  Failure Modes  Results  Graphics  Information

Element 1D |§EEE| Appearance...

Description: A system consisting of three serial components

Component Status Control & Failure Modes

[] Use simple failure rate instead of failure modes
m & = Failure Modes:  Switch to failure modes page
= [m]

] Use Importance Sampling for this element

Initial Status is ON Tum on... Tum off .. Replace...

Model this Function component as a system with child elements

We can then “enter” this element (by clicking the small red triangle). Inside this element we then see
the three components:

B8 —8

Component_A Compaonent_B Component_C

If we were to examine any of these, we would see a single failure mode defined for each. Here, for
example, is Component A:
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Reliability Function Component Properties : Component_4&

Defintion  Failure Modes  Results
Failure Models)

1} Type Description ~
Weibull -
1 | Characteristic life & |Weibull failure mode
=lope factor
v
Add... Remove
[ import failure modes — Part 1D: I:l Import Mow
Advanced failure mode control varable options: Settings...

Failure Mode Parameters
Characteristic Life: Slope factor:
1000 hr 2

Note that the three components are visually connected (via influences). This is because their
dependencies (i.e., Component B requires Component A to be operating and Component C requires
Component B to be operating) have been specified by defining Operating Requirements for Component

B and Component C.

To see this, let’s look at Component B:
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Reliability Function Component Properties : Component_B

Defintion  Failure Modes  Results

Component B Appearance ...

Element 1D:

Description:

Component Status Control & Failure Modes
[ Use simple failure rate instead of failure modes
Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
Initial Status is ON Tum on.... Tum off .. Replace...

[] Model this Function component as a system with child elements

Cperating Reguirements
Logic4ree represents a: | Requirements4ree 3= X >/'

k B@ BExternal Requiremernts
. [-g? Component_A (R-Tree)
=-/&) Intemal Reguirements

Define operating Resource Requirements: O Resources

Save Hesults
Final WValues Morte Caro Histories

Cancel Help

GoldSim allows you to create a Requirements tree (or optionally, the opposite, a Fault tree) to define
the Operating Requirements for the element. There are two types of Operating Requirements: External
Requirements and Internal Requirements. |In order for the component to operate, External and Internal
Requirements must both be met. External Requirements are “outside” of the component itself. In this
case, the sole External Requirement for Component B is that Component A must be operating. Internal
Requirements are “inside” the component. In this case, the sole Internal Requirement for Component B
is that the component itself is not failed (due to its specified failure mode).

Component C is defined similarly, with an External Requirement that Component B must be operating
and an Internal Requirement that the component itself is not failed (due to its specified failure mode).

If we were to run the model, we could look at failure distributions and reliability metrics for each of the
three components. But that is not what we are interested in. We want to look at the combined failure
distribution and reliability metrics for the entire system. We can do this by examining the System
element itself (and looking at its results). If we look at the System element, we will note that it has no
External Requirements, and no failure modes of its own:
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Reliability Function Component Properties : Systemn

Definition  Failure Modes  Results  Graphics  Information

Element 10 |§'EEE| Appearance...

Description: A system consisting of three seral components

Component Status Control & Failure Modes
[ Use simple failure rate instead of failure modes
Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
Initial Status is ON Tum on.... Tum off .. Replace...

Madel this Function companent as a system with child elements

Cperating Reguirements
Logic4ree represents a: | Requirements4ree 3= X >/'

k - [&) Extemal Requirements
=-|&) Intemal Requirements
[-¢ff Component_C {R-Tree)

Define operating Resource Requirements: O Resources

Sawe Results
Final WValues Morte Caro Histories

Cancel Help

Instead, it simply has a single Internal Requirement: that Component C be operating. If Component Cis
operating, the system is operating. If Component C is not operating (because it has failed, or because
Component A or Component B have failed), the system has failed. Note that this is considered to be an
“Internal Requirement” because Component C actually exists inside of the System element.

If we run this model (for 50 days and 1000 realizations) and look at the results for the System, the failure
distribution looks like this:
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Distribution of Time to Failure for "System’

Percentiles ah. eOF |l coF | .. ccoF [ confidence Bounds
Cumulative Probability Value
0.001 25.189 hr
0.01 101hr 1.0
0.05 226.79 hr
0.1 325,18 hr 0.8
0.25 536.29 hr 2
0.5 806.4 hr E 08
0.75 950,19 hr 5
0.9 1018.5 hr B o4
0.95 1068.6 hr L
0.99 1137.3hr 02
0.999 1267.2hr
0.0
o 200 400 600 200 1000 4200 1400
Statistics Time (hr}
Statistic Value
Mumber of Samples 1000 Calculator
Mean 732.58 hr . .
Soi Corae S8 &5 b Cumulative Probability: Value (hr):
95% Confidence Bound 746,47 hr 0.5 - F
Standard Deviation 266.73 hr
Skewness 0.62318 Probability Density: 0.0013748 1/hr
Kurtosis -0,59423
Conditional Taill Expectation: 952,05 hr

This should look familiar. It is statistically identical to the model with a single component and three
failure modes. That is, a system consisting of three independent serial components is mathematically
identical to a component with three independent failure modes.

The Reliability for this system is close to zero (the probability of system failing over 50 days is almost
100%):

Reliability Function Component Properties : Systemn (Result Mode)

Definition ~ Failure Modes  Resuts  Graphics  Information

Summary
Results for 1000 realizations with mean duration of 1200 hr.

Measure Confidence Bounds
5% Mean 95%
Operational Availability: 0.5988 0.6103 0.6219
Inherent Availability: 0.5988 0.6103 0.6219
Reliability: 0.0020 0.0050 0.0081

Parallel Systems

Let’s now consider the same system, but assume that the three components are in parallel:
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In this configuration, only one of the components must function for the system to function (i.e., they are
redundant).

To modify the previous model to represent this configuration, we need to make two changes to the
model. First, we must remove the External Requirements that link Component A to Component B and
Component B to Component C. So, for example, Component B now looks like this:

Reliability Function Component Properties : Component_B

Defintion  Failure Modes  Results

Element 1D:

omponent B Appearance ...

Description:

Component Status Control & Failure Modes
[ Use simple failure rate instead of failure modes
Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
Initial Status is ON Tum on.... Tum off .. Replace...

[] Model this Function component as a system with child elements

Operating Reguirements
Logic4ree represents a: | Requirements4ree 3= X >/'

k - [&) Extemal Requirements
=-|&) Intemal Requirements
ifiz= ~Failed[1] (Normal failure mode)

Define operating Resource Requirements: O Resources

Save Results
Final Values Monte Caro Histories

Close Cancel Help

The only Operating Requirement for Component B is an Internal Requirement that the component itself
is not failed (due to its specified failure mode).
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As a result of these changes, the three components are no longer linked together by influences (since
they have no dependencies on each other):

ﬂlﬂ EE EE

Component_A Component_B Component_C

To represent that fact that the system itself requires one of the three components to be operating, we
simply change the Operating Requirements for the System element. Instead of specifying that the
System is operating if C is operating, we specify that the System is operating if any of the components is
operating. This is done by using an OR gate in the Requirements tree:

Reliability Function Component Properties : System

Definition  Failure Modes  Results  Graphics  Information

Blement 10 |§'EEE| Appearance...

Description: A system consisting of three parallel components

Component Status Control & Failure Modes
[] Use simple failure rate instead of failure modes

Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
Initial Status is ON Tum on... Tum off... Replace. ..

Model this Function component as a system with child elements

Operating Requirements
Logic4ree represents a: | Requirements4ree 3= X >/'

k -[&) Extemal Requirements
=-|&) Intemal Requirements
=-]1) OR
---q.“ Component_A (R-Tree)
---q.“ Component_B (R-Tree)
- Component_C (R-Tree)

Define operating Resource Requirements: O Resources

Sawe Results
Final WValues Morte Caro Histories

Cancel Help

In this case, we have specified Operating Requirements consisting of a Requirements tree that specifies
that in order for the System to operate, Component_A, Component_B or Component_C must be
operating (they are all listed under an OR gate in the tree).

If we run this model (again, for 50 days and 1000 realizations) and look at the results for the System, the
failure distribution looks like this:
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Distribution of Time to Failure for "System’

Percenties ah. eOF |l coF | .. ccoF []confidence Bounds
Cumulative Probability Value
0.001 852.98 hr
0.01 913.14 hr 0
0.05 1003.8 hr
0.1 1052.9 hr 0.8
0.25 1143.1hr 2
0.5 1252.5 hr E 08
0.75 1345.1hr 5
0.9 1416.7 hr B o4
0.95 1455.3 hr L
0.99 1525.9 hr 02
0.999 1537.7 hr
0.0
800 500 1000 1100 1200 1300 1400 1500 1600
Statistics Time (hr}
Statistic Value
Mumber of Samples 995 Calculator
Mean 1242.2 hr . .
Soi Corae it Cumulative Probability: Value (hr):
95% Confidence Bound 12493 hr 0.5 - F
Standard Deviation 135.84 hr
Skewness -0.30648 Probability Density: 0.0026741 1/hr
Kurtosis -0.46315
Conditional Taill Expectation:  1355.5 hr

As we would expect, the MTTF for the system is significantly higher (and the shape of the distribution is
very different). Moreover, due to the redundant nature of the system, the Reliability is now about 64%
(instead of essentially zero):

Reliability Function Component Properties : Systemn (Result Mode)

Definition ~ Failure Modes  Resuts  Graphics  Information

Summary
Results for 1000 realizations with mean duration of 1200 hr.

Measure Confidence Bounds
5% Mean 95%
Operational Availability: 0.9543 0.9673 0.9703
Inherent Availability: 09643 0.9673 09703
Reliability: 0.56100 0.6350 0.8500

k-out-of-n Redundancy

Let’s now consider the same system, but assume that there is a “2-out-of-3” redundancy among the
three components. In particular, we assume that two of three components must be operating in order
for the system to operate. We would expect the performance of this system to be somewhere between
the serial system (all must be operating) and the parallel system (one must be operating).

To modify the previous model to represent this configuration, we simply need to change the OR gate in
the Requirements tree for the System element to an N-VOTE gate:
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Definition  Failure Modes  Results  Graphics  Information

Element 1D: System Appearance...

Description: A gystem consisting of three components, two of which
must operate

Component Status Control & Failure Modes
] Use simple failure rate instead of failure modes
Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
Initial Status is ON Tum on... Tum off .. Replace ..

Model this Function component as a system with child elements

Uperating Reguirements
Logictree represents a: | Requirementsdree 5= X _l‘

’{ &) Extemal Requirements
E-{&) Intemal Requiremerts
=-4) 2VOTE
---q“ Component_A (R-Tree)
---q“ Component_B (R-Tree)
(- Componert_C (R-Tree)

Define operating Resource Reguirements: O Resources

Save Results

8 Edit N-Vote Gate...

Required Votes

Spedfy number of
required votes:

In this case, we have specified Operating Requirements consisting of a Requirements tree that specifies
that in order for the System to operate any two of the components must be operating (they are all listed
under a 2-VOTE gate in the tree).

If we run this model (again, for 50 days and 1000 realizations) and look at the results for the System, the
failure distribution looks like this:
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Distribution of Time to Failure for "System’

Percenties ah. eOF |l coF | .. ccoF []confidence Bounds
Cumulative Probability Value
0.001 634.7hr
0.01 77441 hr 0
0.05 856,15 hr
0.1 889,23 hr 0.8
0.25 947,23 hr 2
0.5 1028.9 hr E 08
0.75 1118.6 hr 5
0.9 1217 1hr B o4
0.95 1260.5hr L
0.99 1334.5hr 02
0.999 1403.8 hr
0.0
500 200 1000 1200 1400 1600
Statistics Time (hr}
Statistic Value
Mumber of Samples 995 Calculator
Mean 1039.7hr . .
Soi Corae FEC Cumulative Probability: Value (hr):
95% Confidence Bound 1045.2 hr 0.5 - F
Standard Deviation 124,46 hr
Skewness 0.20424 Probability Density: 0.0031528 1/hr
Kurtosis -0, 16775
Conditional Tail Expectation:  1138.6 hr

As we would expect, the MTTF for the system is between that for the parallel and series systems. This is
also the case for the Reliability:

Reliability Function Component Properties : Systern (Result Mode)

Defintion Failure Modes  Results  Graphics  Information

Summary
Results for 1000 realizations with mean duration of 1200 hr.

Measure Confidence Bounds
3% Mean 95%
Operational Availability: 0.8554 0.8603 0.8651
Inherent Availability: 0.8554 0.8603 0.8651
Reliability: 0.1087 0.1270 0.1443

Combined Series-Parallel Systems and Other Complex Configurations
The discussions above considered very simple configurations. Let’s briefly consider some more complex
configurations in order to see how they would be represented in GoldSim.

First, let’s consider the following system:
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- -
—

How would we represent this system in GoldSim? The approach is straightforward and very easy to
implement. First we would create the six components (Function elements) and place them inside
another Function element that was specified to be a System (i.e., a Container). Those six components
would have one or more failure modes. The dependencies illustrated in the diagram are then specified
by defining appropriate External Requirements for the six elements.

Components A, B and C would have no External Requirements.

The External Requirements for Component D would be an OR gate:

=-{&) Bxtemal Requirements
=D oR
! [t-1% Component_A (R-Tree)
_ B¢ Componert_B (R-Tres)
EI@ Intemal Requirements
[ [ ~Failed[1] (LogNomal failure mode)

The External Requirements for Component E would be a simple dependence on Component C:

=-{&) Bxtemal Requirements
¢ @-gl? Component_C (R-Tree)
E-{&) Intemal Requiremerts
[ [>= ~Failed[1] (Weibull failure mode)

The External Requirements for Component F would be an OR gate:

=-{&) Bxtemal Requirements
E‘D OR
H g Component_D {R-Tree)
: [-g Component_E (R-Tree)
E-&) Intemal Requirements
] [ ~Failed[1] (Nomal failure mode)

This would result in the following influences to be drawn between the components:

37



GoldSim’s Approach to Reliability Modeling

Compon ent_,q\ ﬂ
ﬂ "”/”/"ycom ponent_D \
Component_B ﬂ
O]

Component_F
ﬂ @

Component_C Component_E

Finally, the System itself would have a single Internal Requirement: that Component F be operating:

E@ Intermal Requirements
[H-gft Component_F (R-Tree)

Note that the Requirements tree for the Function element representing the System (shown above) can
be expanded to see the full requirements tree for all components inside the System:

S8 s Requremens]
g Component_F (R-Tree)

£-[%) Bdemal Requirements

BD OR
é--g‘:‘ Component_D (R-Tree)

2-[&) Bdemal Requiremerts

=-]1) OR
F-gf Component_A (R-Tree)
G- Component_B (R-Tree)

(-[&) Intemal Requirements

=gt Component_E {R-Tree)

EI@ Exdemal Requirements

- Component_C (R-Tree)

E]--@ Intemal Reguirements

[]—-@ Intermal Requirements

If we run this model, we can view a causal analysis to see which components cause failure of the
System:
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Causal Analys

Define Analysis Summary
(") Display Unique States
(®) Display Root Causes States:
Sort by: = ?ntp;:ﬁ:g
(®) Time in State

(") Dceurrence Count

Plot 'Operating’ State

Cause Analysis

* e} Component Operating (957.535 hr, 73.8%)

[=]- Failed - Int, Requirement (242,405 hr, 20,2%)

i ;;F Causative element: Component_F {144,533 hr, 12%)
;;F Causative element: Component_D (43.0303 hr, 3.59%)
;;F Causative element: Component_E (24.6544 hr, 2.05%)
;;F Causative element: Component_C (24,2568 hr, 2.02%)
;;F Causative element: Component_A (2.94046 hr, 0.245%)
;;F Causative element: Component_B (2.94046 hr, 0.245%:)

Ee

Let’s now consider one additional configuration, one that cannot be decomposed into series and parallel
relationships:

Based on the previous discussions, it should be obvious how this would be represented in GoldSim.

First we would create the five components (Function elements) and place them inside another Function
element that was specified to be a System (i.e., a Container). Those five components would have one or
more failure modes. The dependencies are then specified by defining appropriate External
Requirements for the five elements.

Components A and B would have no External Requirements.

The External Requirements for the other three components would all be OR gates. Here, for example,
are the External Requirements for Component E:
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2 ' &) Exdemal Requirements
21D OR
- g“ Component_A (R-Tree)
{ Componert_B (R-Tree)
B- & Irrtemal Requiremerts
tfiz= ~Failed[1] {LogNomal failure mode)

This would result in the following influences to be drawn between the components:

Component_ / omponent_ C

\
-,

Compaonent_B Companent_D

Finally, the System itself would have an Internal Requirement that was an OR gate:

------ &) Bxtemal Requirements
EI {&) Intemal Requiremerts
BD OR
i ¢ Component_C (R-Tree)
¢ Component_D (R-Tree)

Modeling Repairs, Replacement and Preventive Maintenance

In the previous sections we discussed how failure could be modeled in GoldSim. In many systems
failures can be repaired (or components completely replaced), and in order to model the actual
performance of the system (e.g., the availability), we need to be able to represent these repairs.
Moreover, because designing an effective preventive maintenance program is one of the more powerful
applications of reliability modeling, we want to be able to model such a program. Below we show how
GoldSim can readily represent repairs, replacement and preventive maintenance.

Modeling the Repair of Failure Modes
Recall the model that we discussed earlier that involved a single component with three failure modes.
We noted that the component had a Failure Modes tab that looked like this:
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Reliability Function Component Properties : Component

Defintion  Failure Modes  Results
Failure Models)

1} Type Description ~
Weibull -
1 | Characteristic life & |Mode X: Weibull
slope factor
2 |Mormal Mode ¥ Mormal
Loghlormal - Mean .
3 and S0, Mode Z: LogNormal
v
Add... Remove
[ import failure modes — Part 1D: I:l Import Mow
Advanced failure mode control varable options: Settings...

Failure Mode Parameters
Characteristic Life: Slope factor:
|1[H}D hr 2

[] Automatically repair failures

Delay distribution type: Bxponential A

Mean delay time until repaired:
0.0k |

Specify resources required to repair: O Resources...

Cancel Help

In this case, the first of the three failure modes (the Weibull) is selected, so the Failure Mode
Parameters section of the dialog shows the inputs for that mode. The inputs for the other two modes
could be accessed by selecting them at the top of the dialog.

Note at the bottom of the dialog there is an option to Automatically repair failures. If we check this box,
we can define a repair time distribution for the failure mode (as either an Exponential, Gamma or
LogNormal). If a failure mode is set to automatically repair failures, when a failure occurs due to that
mode, the repair time is sampled from the distribution, and after the time passes, the failure is
considered to be repaired (and if the component has not simultaneously failed due to other modes, it
becomes operable again). Each failure mode can be assigned a different repair time distribution.

In this model, we will assign Exponential repair time distributions for each of the three failure modes,
with mean repair times of 100 hr, 150 hr, and 50 hr, respectively.

After running the model (for 300 days and 1000 realizations), we can plot the Status of the component.
Recall that the Status is represented by an integer, and a Status of 0 indicates that the component is
operating and a Status of 2 indicates that for one or more reasons, it is not. Here is a time history plot of
a single realization (realization #6 of 1000) for the Status for this component:
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| History 1

dichat []Table  Display: Realization vle[ sk O
20
1.5
w
o}
w 1.0
(5]
0.5
0.0
0 1000 2000 3000 4000 5000 6000 7000
Time (hr)

As can be seen, the component repeatedly fails and is repaired throughout the simulation. Due to the
differences in the repair time distributions for each of the failure modes (and the fact that the times are
sampled from distributions), we see a variability in the time to repair a failure.

Let’s now look at the statistical results for all 1000 realizations:

Reliability Function Component Properties : Component (Result Mode)
Definition ~ Failure Modes ~ Results

Summary
Results for 1000 realizations with mean duration of 7200 hr.

Measure Confidence Bounds
5% Mean 95%
Operational Availability: 0.7890 0.7915 0.7940
Inherent Availability: 0.7850 0.7915 0.7940
Reliability: 0.0000 0.0000 0.0000

The Reliability of this component it zero (it never survives for 300 days), but the Availability is about
79%. That is, it is operating about 79% of the time.

Note that GoldSim computes two different Availabilities. The Operational Availability represents the
fraction of time the component has been operating over the simulated time. The Inherent Availability
represents the fraction of time the component has been operable over the simulated time. In this
simple model, these are the same. However, in many models they will be different. This is because a
component could be operable (unfailed), but may not be operating. There are a number of reasons that
this could be the case. For example, we could choose to define events that turn a component off and on
(e.g., perhaps it only operates during certain shifts):
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Reliability Function Component Properties : Component

Defintion  Failure Modes  Results

Element 1D:

Qmpa Appearance ...

Description: Componet that fails due to multiple failure modes

Component Status Control & Failure Modes
[ Use simple failure rate instead of failure modes
Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element

Initial Status is ON Tum on.... Tum off .. Replace...

[] Model this Function component as a system with child elements

If we did so, the Operational Availability would be smaller than the Inherent Availability because the
component could be operable (unfailed), but would not be operating for certain periods because it was
turned off.

When repairing a failure mode, GoldSim provides you with the ability to define exactly what a repair
means. Each failure mode has a dialog to define the Failure Mode Control Variable (FMCV):

Control Variable Settings

Define Failure Mode's Control Variable (FMCWV)
Base variable: | Operating Time
Cancel
| Help
Initial Value: Acceleration Factor:
0.0 hr - |1.u

Repair Definition

When repaired, reset FMCV to: |U-U hr

Repair Upon Preventive Maintenance

Repair mode if this condition is true: |~FM_FaiIed

The FMCV is the variable that is referenced by the failure mode to determine when failure occurs (i.e.,
the control variable represents the x-axis of a failure distribution plot). It defaults to Operating Time, but
can also be specified as Total Time or, as we will see later, to a user-defined metric such as mileage.

In this dialog, you can specify what happens during a repair (i.e., what the FMCV is reset to upon repair).
Resetting the FMCV to zero is equivalent to replacement (i.e., making it as good as new). But you could
also set it to a positive value (e.g., using a refurbished part that already has some wear on it).

Modeling Replacement and Preventive Maintenance
GoldSim provides the ability to model maintenance in two different ways:

e You can schedule a periodic replacement of the entire component (which repairs all failures and
resets the FMCV for all failure modes to zero).
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e You can schedule a periodic preventive maintenance. When you do so, you can specify that the
maintenance only impacts certain failure modes and/or only resets their FMCVs to specified
values.

By doing so, you can run simulations to predict how different maintenance regimes impact system
performance.

Modeling Complex Interdependencies and Dynamically Changing Systems

In the sections above, we illustrated how GoldSim can readily model the failure and repair of systems of
components. The great power of GoldSim’s simulation-based approach, however, is its ability to
represent systems that cannot easily be represented by traditional approaches, including:

e Systems that can be impacted by external environmental processes, and whose properties can
change suddenly or gradually as the simulation progresses; and

e Systems that have complex interdependencies, such as a situation where the failure of one
component causes another component to wear more quickly or non-fatal failures (i.e., failure
modes that only partially degrade the performance of a component).

This section will briefly illustrate the power and flexibility that GoldSim provides in this regard by
discussing a number of examples of such systems.

Common Mode Failures

Common mode failures are used to represent the fact that the failure rates of different components
may not be independent. There are a number of factors that could cause such a dependence, ranging
from the components sharing the same power supply to components responding to external
environmental conditions in the same manner.

When this is treated in traditional methods it is often treated in a very simplistic way (e.g., by adding a
“common mode” failure in series with those components sharing that failure mode). Itis
straightforward for GoldSim to handle the system in such a simple way. For example, if you had three
parallel (redundant) components, you could simply include them inside a System (as we did previously),
and then assign the common-mode failure to the entire System:

------ Extemnal Requirements

=-{&) Intemal Requirements
_E) OR
+D Component_A (R-Tree)
+D Component_B (R-Tree)
J:r---r_n Component_C (R-Tree)

If the components all depended on a common component (e.g., a power supply), this would also be
straightforward. The way to represent this in GoldSim would be to simply create a dependency between
a power supply component and each of those components (such that if the power supply failed, the
components all simultaneously failed):

44



GoldSim’s Approach to Reliability Modeling

&

Component_A
. .
Power Supply Component_B
‘*—.‘_‘1
.I:‘ O]
Component_C

Both of these methods cause the system to fail in response to a failure that affects all three components
simultaneously.

A more realistic representation of a dependence between failure modes (that is impossible to address at
all using traditional methods) is that failure rates for multiple components may be simultaneously
accelerated (e.g., due to environmental conditions), but the components do not necessarily fail at the
same time as a result. We discuss that below.

Responding to Evolving Operational Environments

In many cases, a failure mode may be affected by dynamically changing environmental factors. For
example, the wear on a component might be accelerated in hot environments. Moreover, it is possible
for multiple components to be impacted by the same factor.

GoldSim provides a powerful way to represent this. For each failure mode, you can specify an
Acceleration Factor. The Acceleration Factor is a non-negative real number which multiplies the actual
change in the base variable (e.g., Operating Time) to arrive at the failure mode’s current "age" (i.e., it
changes the failure rate). Setting this value to a number less than one means the component will age
slower than normal (failure is decelerated), and setting it to a number greater than one will cause the
component to age faster than normal (failure is accelerated).

For example, we might have a component which ages twice as fast when it operates in ambient
temperatures of greater than 40 degrees Celsius. To represent this, we would simply specify the
following expression in the Acceleration Factor field:

Define Failure Mode's Control Variable (FMCWV)
Base variable: | Operating Time

Initial Value: Acceleration Factor:
|0.0 day | [rf <40Cdeg, 1, 2)

If two components had a similar dependency, they would not necessarily fail at the same time, but both
of their failure rates would be accelerated at high temperature.
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Load Sharing Systems

Another example of dynamic failure behavior is that associated with a load sharing system. A simple
example of such a system is one in which two components act in parallel (i.e., are redundant), but if one
component fails, the failure rate of the other component increases as a result of the additional load
placed on it.

Traditionally, this would be handled using a Markov analysis (which would be straightforward in this
simple case, but would get much more difficult if additional components and states needed to be
considered).

In GoldSim, this can be represented very simply using the same Acceleration Factor discussed in the
previous section. For example, let’s assume that if one of the components failed, we want the failure
rate for the other component to increase by 50%. We could represent this by defining an Acceleration
Factor for the failure modes for Component2 as follows:

Define Failure Mode's Control Variable (FMCV)

Base variable: | Operating Time

Initial Value: Acceleration Factor:
|D.D day v |if:jComponent1 =0, 1, 1.5)

Note that it references the Status of the other component (Component1). Recall that the main output of
a Function element is its Status. The Status takes on an integer value throughout the simulation (e.g., 0
if operating, 2 if failed; 4 if turned off, etc.). In this case, we are saying that if Component1 is operating,
there is no acceleration; if it is not operating, the Acceleration Factor is 1.5 (failure is accelerated by
50%).

Of course, Componentl would have a similar reference for its Acceleration Factor (it would reference
the status of Component2). Hence, representing such a complex dependency in GoldSim is easy and
intuitive.

Using Physically-Based Failure Mode Control Variables

As pointed out previously, in GoldSim each failure mode for a component has a dialog to define the
Failure Mode Control Variable (FMCV). The FMCV is the variable that is referenced by the failure mode
to determine when failure occurs (i.e., the control variable represents the x-axis of a failure distribution
plot). It defaults to Operating Time. It can also be specified as Total Time (which differs from Operating
Time due to failures, as well as components that can be turned off). For certain types of components,

the FMCV can also represent the number of cycles (number of landings, number of times turned on,
etc.).

In addition, you can define a custom, user-defined FMCV. This is important because in some cases, it
may be appropriate to define a failure control variable that is defined with respect to a physically-based
variable such as mileage or perhaps the cumulative load. Any monotonically increasing function can be
specified as a base variable. Because GoldSim is a flexible and powerful dynamic simulator, it can easily
model and track such variables (recall the beginning of this paper when we illustrated how GoldSim
could track the amount of water in a pond).
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For example, if we were simulating an automobile, we could model (in great detail) the accumulated
mileage (accounting for seasonal trends, etc.). We would then define this as the FMCV for various failure
modes:

Control Variable Settings

Define Failure Mode's Control Variable (FMCV)

Base variable: | User-defined w Units:

Base variable definition: IMHEE";E

Initial Value: Acceleration Factor:
|o.o mi v |1.0

Standby Systems

Many systems have backup components that can be switched on in the event of a failure of a primary
component. Such a system provides an excellent example of the power and flexibility of GoldSim, and
also provides an example of the use of the Action element.

The example we will consider is shown below:

/ g \
@ o ﬂ

Primary Backup
\%} ’/

Backup_Off

Primary and Backup are simply Function elements (like those we have discussed previously). They have
identical failure modes. There is one key difference: Primary is initially On (the Initial Status is ON is
checked):
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Reliability Function Component Properties : Primary

Defintion  Failure Modes  Results

Element 10 |m Appearance...

Description: This represents the primary component .

Component Status Control & Failure Modes
[ Use simple failure rate instead of failure modes
Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
Initial Status is ON Tum on.... Tum off .. Replace...

[] Model this Function component as a system with child elements

while Backup is initially Off:

Reliability Function Component Properties : Backup

Defintion  Failure Modes  Results

Blement 1D: |o Appearance...

Description: This represents the backup component.

Component Status Control & Failure Modes
[] Use simple failure rate instead of failure modes

Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
[Jiritial Status is ON v Tumon... | .+ Tumoff.. Replace. ..

[] Model! this Function componert as a system with child elements

Note the Turn on... and Turn off... buttons. We will discuss these shortly.

We've already mentioned that Function elements output a Status. However, this is not their only
output. Among other things, they output several types of “events”. Recall from earlier in this paper we
discussed how GoldSim elements can generate and process events (discrete occurrences or
transactions). Whenever a Function element fails, it generates an event (named StopOperating).
Whenever it is repaired, it generates another event (named StartOperating). We can then use these two
events to model this system.

The elements named Backup_On and Backup_Off are Action elements. They are similar to Function
elements (e.g., they can fail), but they are used to model different kinds of components. Whereas
Function elements are used to model components which operate continuously once turned on (e.g.,
pumps, engines), Action elements are used to represent components which must respond to a control
command or condition (e.g., switches, relays). In this example they represent switches that turn the
Backup component on and off. Note, however, that these may fail when triggered to do so (i.e., they
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can fail on demand). In GoldSim, among other things, we can specify a probability that a triggered
Action will be successful.

Action elements are triggered to act by a specified event, and if they are successful, they in turn emit an
event named ActionOK. (If the Action is unsuccessful, it generates an event named ActionFailed.) The
Action dialog looks like this (note the Element Action Trigger):

Reliability Action Compeonent Properties : Backup_On

Definition Delay ~ Failure Modes  Results

Bemert ID: |m Appearance...
Description: Represents the control system that tums the backup on.

Component Status Control & Failure Modes
[] Use simple failure rate instead of failure modes

Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
Initial Status is ON Tum on... Tum off... Replace. ..

[] Model this Action component as a system with child elemerts

Handle action intemally:

Element Action Trigger: W Action’...

Operating Requirements
Logic4ree represents a: | Requirements4ree 3= X )/.

k - [&) Extemal Requirements
=-|&) Intemal Requirements

Define operating Resource Requirements: O Resources

Save Results
Final WValues Morte Caro Histories

Cancel Help

The StopOperating event from the Primary is the Element Action Trigger for Backup_On. It, in turn, if
successful, emits an event (ActionOK) that triggers the Backup to turn on (via the Turn on... button in the
Function dialog). Once the Primary is repaired, it emits a StartOperating event that becomes the
Element Action Trigger for Backup_Off. It, in turn, if successful, emits an event (ActionOK) that triggers
the Backup to turn off (via the Turn off... button in the Function dialog). So the annotated logical
structure looks like this:
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J—-r-’_" B .__-_\--H-H
.J/ o

StopOperating Backup_On . ﬁ'y:'.iﬂnOK .
[Triggers Action) (Triggers On)
/ \
.f’rr .‘
Primary Backup

2 - +i o - /
lS.gr.Oper.a-l_l1al ActionOK
(Triggers Action)

. [Triggers Off)
— o

Backup Off
This provides a powerful, intuitive and flexible way to model standby systems (and failure on demand).

Non-Fatal Failures

Sometimes components can fail in such a way that the system still operates, but does not operate
optimally or as designed. An example of this is the failure of three state devices. Three state devices are
components that can be unfailed, can fail “open” or can fail “closed” (shorted).

The previous discussion should provide an indication of how such a device can easily be represented in
GoldSim. An Action element would be used to represent the device (e.g., a switch or valve) that “opens”
or “closes”. Based on whether or not the Action is successful when triggered, various events are
generated (ActionOK or ActionFailed), and by appropriately responding to these events, GoldSim can
then track at any given time the state of the device.

A more interesting (and complex) example of a non-fatal failure is a case where a failure causes
degraded performance. Imagine, for example, a pump that normally pumps at a particular speed (and
hence has a particular outflow). Perhaps one of its failure modes results in the entire pump stopping.
But perhaps another failure mode may simply cause the pump to operate at a slower speed (resulting in
a lower outflow). How would we model that? We will discuss that very important topic in the next
section.

Modeling Consequences of Failure (System Performance)

In the previous sections we have provided an overview of the power and flexibility that GoldSim
provides for modeling the failure and repair of components in both simple and complex systems (and
computing reliability metrics such as reliability and availability, as well as carrying out causal analysis).

However, although these metrics and analysis can be of value and interest, what is often of greater
interest are the actual consequences of failure (e.g., changes in throughput, costs, and other measures
of system performance). That is, the entire reason we are modeling the reliability of the system in the
first place is because it performs some function (e.g., moves/processes material) , and we want to
optimize key measures of that function (e.g., the throughput of material, the unit cost of processing the
material).
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This is easily facilitated within GoldSim because it is first and foremost a powerful and extremely flexible
general purpose probabilistic dynamic simulator that has been used to simulate the behavior and
evolution of a wide variety of complex systems ranging from environmental systems (e.g., mines,
watersheds, waste disposal sites) to engineered systems (e.g., processing facilities, machines, space
missions) to business systems (e.g., companies, projects). That is, GoldSim has the capability to
realistically model the performance of complex systems.

By combining these fundamental capabilities with the features we have described above (modeling the
failure and repair of engineered components), GoldSim makes it possible to build “total system models”
that can represent 1) evolving environmental conditions; 2) the realistic, dynamic complexity of failure
of components within the system (e.g., complex interdependencies, failure rates that respond to
evolving environmental conditions); and 3) the actual consequences of failure (e.g., changes in
throughput, costs, and other measures of system performance).

To illustrate this in a very simple example, let’s consider the case of the pump discussed above. We will
do this by revisiting the simple pond model that we discussed at the beginning of this paper. Recall that
water flowed into the pond, the pond leaked, and a pump removed water from the pond. The model
looked like this:

Capacity \

_
O]

Inflow / I,f" Pond W
/ Il ||
% I'J

Pumping_Rate _f.;:

Leakage

The pond had a capacity, but in our example, this was never reached. We will modify this simple model
in two ways:

1. We will assume that the pump can fail with two different failure modes:
e One shuts the pump down completely;
e One cuts the pumping rate in half (from 5 m3/day to 2.5 m3/day)
2. When the pond reaches its Capacity (175 m3), it overflows into a second pond.

We are interested in how much water overflows over the period of interest (say 1 year). That is, our
performance measure (i.e., the consequence that we are interested in) is the cumulative amount of
water that flows into the overflow pond over the year.

The new model structure to represent this looks like this:
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7 Consequence Model
Capacity
N (] —
Reliability o
Model Inflow Pond Overflow_Pond
» AW
&% epadl
Pump Pumping_Rate f.;t'
Leakage

The Pump element has two failure modes defined. Both are Weibulls.

The first failure mode has a Characteristic life of 250 days and takes approximately 20 days to repair:

Reliability Function Component Properties : Purmp

Definion  Failure Modes  Results
Failure Mode(s)

D Type Description ~
Weibull -
1 |Charscteristic lifs & |Fatal
=slope factor
Weibull -

2 |Characteristic life & |Degraded
slope factor

Add... Remave

[ Import failure modes ~ Part 1D: l:l Import Mow

Advanced failure mode control varable options: Settings...

Failure Mode Parameters

Characteristic Life: Slope factor:
1250 day 2
Automatically repair failures

Delay distribution type: BExponential w

Mean delay time urtil repaired:

|20 day

Specify resources required to repair: O Resources ...

Cancel Help

The second failure mode has a Characteristic life of 200 days and takes approximately 15 days to repair:
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Reliability Function Component Properties : Pump

Defintion  Failure Modes  Results
Failure Models)

D Type Description ~
Weibull -
1 |Characteristic life & |Fatal
slope factor
Weibull -

2 |Characteristic life & | Degraded
slope factor

Add... Remove

[ import failure modes — Part 1D: I:l Import Mow

Advanced failure mode control varable options: Settings...

Failure Mode Parameters

Characteristic Life: Slope factor:
|2m} day 2

Automatically repair failures

Delay distribution type: Bxponential A

Mean delay time until repaired:
|15 day |

Specify resources required to repair: O Resources...

Cancel Help

In addition to representing the failures and repairs, however, we want to represent the consequences of
the failures. In particular, we want to represent that fact that if the pump fails by the first mode, it is
fatal (it stops pumping completely), while if it fails by the second mode, the pumping rate is cut by half.
So how do we represent these consequences on the pumping rate?

We've mentioned several times that Function (and Action) elements have multiple outputs that can be
referenced (e.g., Status, StopOperating, StartOperating). Another of these outputs identifies whether or
not the component is currently failed by a particular mode. In this case, an output named
Pump.Failed[1] is true if the pump is currently failed due to the first failure mode, and false otherwise.
Similarly, an output named Pump.Failed[2] is true if the pump is currently failed due to the second
failure mode, and false otherwise. These can then be used to define the Pumping_Rate as a function of
time. The Pumping_Rate element is what is known in GoldSim as a Selector element. A Selector simply
provides a straightforward way to create nested if, then logic:
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-j Selector Properties : Pumping_Rate

Definition

Element ID: | Appearance...
Description:

Display Units: |m3,|fday Type... |Scalar

Selector Inputs

MNote: The if statements are evaluated in order, and the Selector takes on the value corresponding to the first true statement that is
encountered. If all statements are false, it takes on the final value.

If Then
Pump.Failed[1] 0.0 m3/day
Pump.Failed[2] 2.5 m3iday
Elze 5 m3/day
Add Switch Delete Switch
Save Results
Final Values Monte Carlo Histories

Cancel Help

As a result of this, the Pumping_Rate dynamically changes during a simulation as a result of failures and
repairs.

We can see this if we run the model (for 1 year and 1000 realizations), and view a time history result.
This plot shows the volume in the two ponds, as well as the pumping rate, for a single realization (#131):

il History
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In this particular realization, the pump fails twice due to the first mode (such that the pumping rate goes
to zero) and once due to the second mode (such that the pumping rate drops to 2.5 m3/day). In all three
cases, this causes the water volume to increase.

Of course, we can compile all of the failures for all 1000 realizations to view standard reliability metrics
for the pump:

Reliability Function Component Properties : Pump (Result Mode)
Definition ~ Failure Modes ~ Results

Summary
Results for 1000 realizations with mean duration of 365 day.

Measure Confidence Bounds
5% Mean 95%
Operational Availability: 0.8804 0.8243 0.8882
Inherent Availability: 0.8804 0.3243 0.8832
Reliability: 0.0014 0.0040 0.0077

We see that the Reliability of the pump is close to zero (i.e., it almost never operates for the entire year)
and the Availability is about 88% (i.e., it is operating 88% of the time).

Although this may be of some interest, it is not what we really what we want to know, as it says nothing
about the consequences of the failure. The consequence of failure is that the pond can potentially
overflow (not all failures result in an overflow, depending on the inflow, the failure mode, and how
quickly the pump is repaired). Because we built a consequence model, however, we can readily quantify
this. Here is the probability distribution of the cumulative overflow from the pond:

Distribution (m3)
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This indicates that there is about a 30% chance of the pond overflowing. If it does, the cumulative
overflow could be as high as about 130 m3.

Here we see the true power of a simulation-based reliability modeling approach: the ability to predict
the consequences of failure. In fact, one could argue that this is the entire objective of reliability
modeling. By tying predicted failures to predicted consequences, we can use modeling results to make
design decisions. For example, in this case, if the predicted consequence was unacceptable (e.g., if it

would result in exceeding a regulation), we could change the design of the system (e.g., have a backup
pump available).
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GoldSim’s Approach to Probabilistic Risk Assessment

We've just described in some detail how GoldSim can be used for reliability modeling. Reliability
modeling and probabilistic risk assessment (PRA) share many common features, since they both deal
with failure of various components and systems. As a result, much of what has just been discussed for
reliability modeling is also applicable for probabilistic risk assessment.

However, these two types of analyses traditionally use different types of approaches, since they are
typically focused on different types of results. Reliability models focus on computing the reliability and
availability of a system, and are typically used to compare design (including preventive maintenance)
alternatives with the goal of optimizing things like throughput, warranty and/or maintenance costs.

Probabilistic risk assessment, on the other hand, was initially developed to analyze systems such as
nuclear power plants and space missions, in which the consequence of failure is very high (e.g., can lead
to injury, loss of life, severe damage to the system, or perhaps damage to the surrounding
environment). Hence, it focuses on predicting the probability of those events that lead to such
consequences. For these kinds of systems, due to the nature of the consequences of failure, backup and
redundancy are often a key part of the design, such that a failure is usually caused by a (presumably
rare) combination of events.

That s, in a PRA, the output of the model typically is the probability of a particular unlikely, but high
consequence outcome (e.g., catastrophic failure of the system), and identification of those events or
components most likely to lead to that outcome. The ultimate goal is not to optimize things like
throughput or costs, but to evaluate system safety and inform design or operational changes that can
minimize the probability of such failures.

As a result, the conventional approach to risk assessment for such systems focuses on the analysis of
initiating events and subsequent event sequences that could lead to failures, and on enumerating and
calculating the probabilities of different outcomes. This is typically done through logic-based
procedures (i.e., event trees/fault trees).

In the sections below, we briefly discuss how such analyses can be carried out in GoldSim.

Basic PRA Concepts

This section very briefly describes some basic PRA concepts, specifically focusing on traditional
approaches (event trees/fault trees). It is not meant to be exhaustive and discusses only the basic
concepts. The objective is simply to provide the basis for discussing how these concepts translate to a
simulation-based approach. The discussion below is based on Stamatelatos et al (2011) and Vesely et al
(2002).

A PRA attempts to model a sequence of events that need to occur in order for undesired end states
(e.g., catastrophic failures) to occur. This is done by representing a set of scenarios that have specified
frequencies and consequences. A scenario starts with an initiating event (IE) that perturbs the system.
This perturbation requires a response from one or more systems (or operators). The IE is followed by
one or more pivotal events leading to a particular end state. The pivotal events include successes and
failures of responses to the IE, as well as the occurrence (or non-occurrence) of key conditions or
phenomena. The various pivotal events eventually lead to possible end states (some of which are
undesired).
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One way to represent the scenarios that ensue from a given IE is in the form of an Event Sequence
Diagram (ESD). This is essentially a flowchart with paths leading to different end states. Each path
through the flowchart represents a scenario:

../I;iliaiing , Pivotal _| Pivotal _S
\fvent> Explanation Event 1 | Event2 o ok
] o
Event 3
Event
phrased as ——Yes —#
a guestion Damage Level 1
|
No Pivotal Pivotal
] ™ Eoent2 ™ Event3 Damage Level 1

Damage Level 2
Pivotal
Event 3 Damage Level 3
Damage Level 4

Typical Structure of an Event Sequence Diagram (from Stamatelatos et al, 2011)

Y

An Event Tree (EV) presents this same information in a tree structure, and facilitates a quantitative
analysis:

Initiating Event Pivotal Event 1 Pivotal Event 2 Pivotal Event 3 # End State
INIT-EV PE-1 PE-2 PE-3
Q Q GOOD
@c C 2 GOoOD
= [ 3 DAMAGE_LEVEL _1
o= 'S, 4 DAMAGE_LEVEL 1
o e 5 | DAMAGE_LEVEL 2
success C= o § | DAMAGE_LEVEL 3
faihure O C i DAMAGE_LEVEL 4

Event Tree Representation of Event Sequence Diagram Show Above (from Stamatelatos et al, 2011)

Each path through the tree is a scenario. Given a probability for each node, each logical sequence
leading to an end state can then be represented using simple logical operations, and the probability of
each end state can be computed. In some cases, the probabilities for the nodes can be assigned directly
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(e.g., based on experimental data). More frequently, pivotal events are represented using Fault Trees
(FT). In a Fault Tree, the sequence of events leading to the occurrence of the “top event” is
systematically divided into events whose probabilities can be estimated. Fault Trees are constructed
using logic gates (e.g., AND and OR gates):

|E2 AR BB cc DD # End State

INIT-EY AR EB

oK ‘

Q= TRAN

LoV ‘

OB

Loc ‘

‘ 4 | TRAN2

Lov ‘

- 5 > J

Schematic Illlustrating How Selected Pivotal Events in an Event Tree are
Represented Using Fault Trees (from Stamatelatos et al, 2011)

To carry out a traditional PRA, a realistic (and often quite large) set of scenarios must be developed and
quantified in this manner.

In the sections that follow, we briefly discuss how these concepts translate into GoldSim’s simulation-
based approach to PRA.

Modeling Initiating Events in GoldSim

When carrying out a PRA in GoldSim, the same type of conceptual systems analysis described above is
required in order to identify system components, their behavior, and initiating events (using, for
example, graphical tools such as Event Sequence Diagrams). However, the way that the various events
are represented and modeled is different in a simulation-based approach.

Let’s begin by discussing how GoldSim represents initiating events. In a GoldSim PRA model, initiating
events can be subdivided into two categories:

e Arandom external or internal event. Examples of external events include a solar flare or
terrorism event. Examples of random internal events might be an unplanned human action or
running out of fuel.
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e The failure of one or more system components.
These two types of initiating events are treated differently in GoldSim.

Modeling Random Initiating Events

Random (external or internal) events are modeled using Timed Event or Triggered Event elements. A
Timed Event element randomly generates events based on a specified rate:

Tirned Event Properties : Solar_Flare

m = = Definition
= %D = Element ID: | Appearance. ..
. Solar.FIare i Description: | Poisson distributed random solar flare event

Event Definition

Occurrence Type: | Random time intervals (Poisson) A

Occurrence Rate: |U-425 yr-1

[Juse Impartance Sampling for this element

Maximum Mumber of Events: |1eg

Save Results
Final Values Time History

Cancel Help

L_’ © Note: Although by default Timed Event elements represent random events as Poisson
processes (i.e., the time intervals between events are exponentially distributed), any
distribution can be selected to represent the time intervals between events..

Triggered Event elements can represent events that are trigged by circumstances (running out of fuel):
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No_Fuel_for_lon_Propulsion Definition
E - - & - 7]

Element ID: | No_Fuel_for_Ion_Propulsion Appearance...

Description: | Event triggered when ion propulsion system
exhausts fuel

Event Generation

W  Inigger...
Define Triggering...
Define Triggering Events
Type Trigger Definition
On True ~||Xenon_Reserves= 0.01 kg
= Add X Delete For simultaneous events, only act once
¥ More O Resources... Help

Of course, the great power of a simulation-based approach in this regard is that the model itself can
simulate the evolution of the condition(s) leading to the event (in this example, the amount of fuel
remaining).

Modeling Initiating Events Resulting from Failures
In some cases, the initiating event is not a random external or internal event, but simply a (presumably
rare) failure of a component or system of components.

We have discussed in detail in the first part of this paper the powerful and flexible capabilities that
GoldSim has for realistically modeling failure events using Reliability elements (Function elements and
Action elements). These features can, of course, be used to model complex failure scenarios that could
act as an initiating event.

Modeling Pivotal Event Sequences in GoldSim

In conventional PRA analyses, the potential effects of an initiating event are represented using an Event
Tree, with the consequences of an initiating event cascading through a series of chance nodes (the
pivotal events). The outcome of each pivotal event reflects the probabilistic state of a particular
component of the system (e.g., does the detector detect the smoke?). These tree-based approaches rely
on the judgment of analysts who have the experience and imagination to identify all potentially-
significant event sequences.
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In the simulation model, however, the user has only to define the elements that are directly affected by
an event. The effects of an initiating event (the various sequences of events) then arise naturally out of
the model’s logic, as the elements that are affected respond to the event and its consequences
propagate through the model. This is another way in which the simulation approach is distinguished
from traditional tree-based approaches. In a sense, the simulation approach “discovers” failure
scenarios, as opposed to the classical PRA approach where the analyst has to define all of the failure
scenarios up front.

Within GoldSim, two quite different approaches can be taken to represent a pivotal event. The simpler
of these is to add a Random Choice element, which has a set of user-defined outcomes with associated
probabilities:

Random Cheice Properties : Lander_Separation

Definition
Element ID: | | ander Separation| Appearance. ..
= = = Description: | This represents the pyrotechnics that separate the
lander from the orbiter,
o o riggering
Lander_Separation Trigger...
- = P - v g

Probability / Event Table

Probability Output Event
1 1088 Successful
2 |Remaining Probability Unsuccessful
Add Remove

[Juse Impartance Sampling for this element

Save Results
Final Values Mante Carlo Histories

Cancel Help

Each outcome is associated with a different element output. Upon receiving notice of a triggering event,
the Random Choice element “rolls the dice” to randomly select which outcome should occur, and emits
an event from the associated output.

This approach is simple, but may not be realistic. When an initiating event sets a train of pivotal events
in motion, the outcome usually depends on the states of some physical components of the system. If a
component is not operating when required, negative outcomes may ensue. In the simplest case, for a
non-repairable component that has only operating and failed states, with a constant hazard (failure)
rate, the probability that the component is operating when the event occurs simply equals its projected
reliability. This can be readily represented using the Random Choice element.
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However, if the failure rate is not constant, or if the component has more complex failure, repair,
switching, or maintenance behaviors, such a simple approximation may not be adequate. For example,
what if the component is normally repaired when it fails, but the necessary spare part may not be
available? What if its aging rate depends on its operating environment?

An alternative approach for representing pivotal event sequences that can handle these kinds of
complexities is to use a Reliability element and simulate its state dynamically. When the precedent
event occurs, the state of the component or system represented by the Reliability element is known
within the simulation (e.g., it may be operating normally, or failed, or undergoing maintenance or repair,
or inoperable because of a missing requirement, etc.). The Monte Carlo simulation process effectively
samples these possibilities as it cycles through a number of realizations.

Note that within a GoldSim model, the current status of a Reliability element can be readily queried
using a Decision element:

Definition
Element ID: | Toxics_Remaved_by_EC Appearance. ..
5] 5] 5]
Description: | Both environmental control filters must be operating
for toxics to be safely removed.
=] =]
= O ) )
Toxics_Removed by EC Triggering
5] - m ~ - = .
v Trigger...
g Air_Filter_1
Output selection when triggered Relabiity element for the first air ter.

Number of Failure Modes: 1

Condition to test

If Environmenial_Control_System. Ar_A ter Toxics_Remowe
I =RL_Operating &&

[elseif Environmental_Control_System. Air_Filter _

2 =RL_Operating
glee | Mot_Removed

-

Save Results
Final Values Maonte Carlo Histories

0K Cancel Help

In this example, the Decision element queries the status of two Reliability elements to determine if they
are operating successfully. Based on this, it emits one of two possible events (in this case
“Toxics_Removed” or “Not_Removed”) that then trigger other elements in the sequence to determine
the relevant end state.

Recall from our discussion above that pivotal events are often modeled using Fault Trees. As we have
seen, Reliability elements themselves usually incorporate complex Fault Tree logic. In the discussions
earlier in this paper, Operating Requirements for Reliability elements were presented in terms of
Requirements trees:
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Elq. Component_C (R-Tree)
EI@ Bxdemal Requirements
E‘]IJ 0OR
---q. Component_A (R-Tree)
---q. Component_E (R-Tree)
¢ [@-/&) Intemal Requiremerts
EIQ Component_D (R-Tree)
EI@ Exdemal Requirements
E‘EJ OR
---q. Component_B (R-Tree)
---q. Component_E (R-Tree)
[+-{&) Intemal Requirements

However, a Requirements tree can also be defined and interchangeably viewed as a Fault tree (in which,
for example, AND gates become OR gates, and vice versa):

. m Extemal Requirements
28 1)) i Fequremers)
=-{&) AND
EI|.5 Component_C (F-Tree)
: EID Bxtemal Requirements
=-[8 AND
---!.g Component_A (F-Tree)
---!.-,; Component_E (F-Tree)
#-J1) Intemal Requirements
& Component_D (F-Tree)
EIEI Extenal Reguirements
=-[& AND
---!.g Component_B (F-Tree)
---!.-,; Component_E (F-Tree)
&-]1) Intemal Requirements

o

Compared to the use of a simple Random Choice element, the use of Reliability elements to represent
pivotal event sequences requires much more input data, and is more complex computationally. Hence,
the modeler has to choose between the simplicity of a Random Choice element and the realism of a
Reliability element. Typically, Random Choice elements will be used in preliminary versions of a model,
and replaced by Reliability elements in later versions.

Example PRA GoldSim Applications

The brief discussion presented above describes how key PRA concepts translate into a simulation-based
approach. To illustrate this further, two simplified PRA applications will be briefly discussed. These two
aerospace applications are based on example models in Appendix D of Stamatelatos et al (2011). The
applications will not be discussed in detail. Rather, several representative portions of the models will be
discussed to highlight key features of the GoldSim simulation-based approach. (Both applications are
available for download from the GoldSim Model Library, which will be discussed at the end of this

paper.)
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PRA of a Lunar Base

This model evaluates the performance of a lunar base over its 20 year scientific mission. The purpose of
the model is to determine the probability that the mission will successfully achieve all the mission goals,
along with the probability of two undesirable end states (Loss of Mission and Loss of Crew).

The Lunar Base itself is represented using a Reliability element (a Function) that is modeled as a System

(a Container):

Reliability Function Component Properties : Lunar_Base

Definition  Failure Modes  Results  Graphics  Information  Exposed Outputs

Bemert ID: | Appearance...

Description: Represents the structure of the lunar base.

Component Status Control & Failure Modes
[] Use simple failure rate instead of failure modes

Failure Modes:  Switch to failure modes page

[] Use Importance Sampling for this element
Initial Status is ON Tum on... Tum off... Replace. ..
Model this Function component as a system with child elements

Operating Requirements
Logictree represents . | Reguirementstree 4+ X ’l'

% | 8% Bdemal Requirements
=-{&) Intemial Requirements
[l Enviranmental_Control_System (R-Tree)

[z Power_Generation (R-Tree)
[t-¢1% Command_Control (R-Tres)

-t Commurication (R-Tree)
[E,“.- ~Failed[1] {Major structural damaage to station)
il ~Failed|?] (Energetic event)

Define operating Resource Requirements: O Resources

Save Results
Final Values Monte Caro Histories

Cancel Help

The contents of this element are shown below:
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The safe operation of the base is dependent on four major subsystems: Environmental Control, Power
Generation, Command and Control, and Communication (each of which is modeled as a Function
element). The base’s dependence on these subsystems is modeled using a requirements tree (shown in

the dialog for the Lunar Base element above). Its structural integrity is modeled as failure modes that
can be triggered by certain initiating events.

\ dering_|

To Loss of Crew End
\ > State
O]
Atmospheric_Leak
To Event Triggered
> Failure Made
Te— (Structural Damage) of
> Lunar Base
ol

Energetic_Hazard

If any of these systems fails, or if the structural integrity of the base is compromised, evacuation is
required. Evacuation is modeled by another Reliability element (an Action) triggered by the failure of
the base, or the consequences of certain initiating events. The mission is always lost if evacuation is
required, and if the evacuation fails it leads to Loss of Crew.

The scientific mission of the base is dependent on a number of instruments (represented above using
another Function element), some of which can be replaced during a periodic resupply mission, and

others which cannot be replaced. If the irreplaceable scientific instruments are destroyed, it leads to
Loss of Mission.

There are a number of initiating events considered in the model. Let’s look at one to get an appreciation
for how such an event sequence is modeled in GoldSim. This particular sequence involves a smoldering

event that results in the creation of gaseous toxics. The Event Sequence Diagram associated with this
initiating event is shown below:
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Event Sequence Diagram For Smoldering Event at Lunar Base (from Stamatelatos et al, 2011)

The model for this in GoldSim is shown below:

To event- triggered

failure of critical
oy equipment (potentially
=

leading to Loss of

5 - Shorts Mission or Loss of Crew)

Smoldering_Wire
o} :

Toxics_Removed by EC

¢
@

Toxics_Detected

Potentially
. leading to Loss

Crew_OK of Crew

The initiating event is represented using a Timed Event element and is modeled as a Poisson process.

The event has two direct consequences: 1) release of toxic fumes into the base atmosphere; and 2)
possible generation of electrical shorts. In contrast to the ESD approach, in GoldSim both potential
consequences are immediately triggered. With regard to the toxic fumes, the current status of the
filtration system is queried using a Decision element (Toxics_Removed_by EC) that queries Reliability
elements in the Environmental Control system. If these elements indicate that the system is fully
functional, the toxics will be removed.
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However, if the system is partially failed (in a compromised state but functional enough to safely
support the astronauts), the toxics will not be removed, and GoldSim will proceed to the next Decision
element (Toxics_Detected), which queries a Reliability element representing an automatic toxic
detection system. If it is operating, the crew will be notified and will take action to remove the toxics. If
not, GoldSim proceeds to a Random Choice element (Crew_OK) that determines whether the crew is
able to detect the presence of toxics by smell. If they do, they can take action to deal with the problem.
If they do not, it leads to Loss of Crew.

The electrical shorts consequence uses another Random Choice element (Shorts) to determine whether
or not electrical shorts occur. If they do, there is a probability that the shorts could trigger a failure of
one or more major base systems. If failure does occur, this in turn triggers the Reliability element
representing evacuation, and depending on its success this leads to either Loss of Mission or Loss of
Crew.

The point here is that this event sequence can be represented with dynamic realism using a combination
of the powerful elements provided by GoldSim (in this case, Timed Events, Random Choices, Decisions,
and Reliability elements).

The form of the key results for such a simulation look like this (in this case, the probability of Loss of
Crew):

Crew Lost Result (-) X

Ah.POF | lcDF |l ccOF gliChat ERTable % Gp 53
CI'BW_LOSt o
Percentiles 1.0
Probability Value 1
0513 false 0.8
0.087 true
06
04
0.2
0.0 I-I
Statistics -02 00 02 04 06 08 10 12
Statistic Walue
Mumber of Samples 1000
Calculat
Mean 0,087 cuEer
5% Corfidence Bound 0.07223 Cumulative Probability: Value:
95% Confidence Bound 01021 0913 | -3 ||}
Standard Deviation N/A
Skewness NAA Probability Density: 0913
Kurtosis N/A Conditional Tail Expectation:  0.087

This indicates a probability of about 8.7%, with 5/95% confidence bounds (based on the number of
realizations) of between 7.3% and 10.2%.

One other interesting aspect of this example model is that it provides an illustration of how the
simulation approach allows for the straightforward representation of the effects of human behaviorin a
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PRA. In particular, a scenario was added where crew action may be required in order to react to and
repair a rupture of one of the two electrical storage battery systems.

In this scenario, the crew is required to notice and respond to the failure, taking appropriate action to
mitigate the effects of any electrolyte release before irreparable damage is done to the scientific
instruments or to the other battery system, either of which would result in loss of the mission. However,
there is a possibility of the crew responding in an inappropriate way, so that the damage occurs even
though the response was timely. A dynamic model (randomly) represents the crew’s response to a leak:

: 4 éz ] ™~
Detection_Time
¢ Check_Manual

g — @ — g — 73— @

""—K
Time_to_Detect Type_of Response  Consult_Controllers %X Remediation_Time Cleanup_Complete
\ Time_to_Realize_Incorrect
a5 ‘:} 7
_\1‘“-5_____ __/

Immediate_Action —

In this diagram, the objects such as Time_to_Detect are Event Delays that are used here to represent
processes that have a specified (probabilistic) duration to complete.

Based on this model, if the initiating event occurs, a response time is calculated, and the probability of
damage to the scientific equipment is then computed as a function of the response time. Here, for
example, is the simulated distribution of response times:

Distribution Result (min)

A POF  lICDF | |I, CCDF | gfjChat [ Table % ot Co O3

1.0

< < ot
', o) o

<
)

Probability of Not Exceeding

&
=

10 20 30 40 50 &0
Response Time (min)

(=]
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PRA of an Unmanned Exploration Mission

The second PRA model that we will briefly discuss here evaluates the performance of an unmanned
scientific mission to another planet. There are a number of phases (launch, cruise, orbital insertion,
lander descent and scientific mission on the surface), and the requirements for successful operation
change as the mission evolves. Of course, using a simulation approach makes it straightforward to
represent these changing requirements. The key outputs from the model are the proportions of
missions where minimal and full scientific goals are achieved. Let’s briefly examine a couple of these
phases.

To successfully launch the spacecraft (consisting of an orbiter and a lander), the rocket engines (solid
rocket boosters, main engines and upper stage), must function when required during the launch
sequence. They must also successfully separate at the appropriate time. Any failures lead to loss of
vehicle. For example, here is the Main Engine submodel within the Launch Phase submodel:

"-@I%'JE‘:E' o Main Engine
- TUIse_rnase
.o Lander This container houses elements that model the performance of the main engines.

VD Launch_Phase
D Failure_Location
V-D Main_Engine_Model

Lt Main_Engines
@ Main_Engine_Separation & —_—
4> Main_Engines_OK o o} O] O]
» {_] Mission_Timeline Main_Engines Main_Engines OK  Main_Engine_Separation
D Selid_Rocket_Boosters_Model - -
' D Upper_Stage_Model
----- [ Failure_Prabability
----- . Launch_Successful
----- ’ Launch_Unsuccessful

0 Launching
g% Orbiter

: D Results

D Uncertain_Variables

A Reliability element is used to model the main engines, and a Random Choice is used to model the
separation.

The orbiter model is shown below:
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Note that in addition to containing a number of Reliability elements for the various system components,
it also tracks consumables (Xenon_Reserves and Attitude_Thruster_Reserves). A simulation-based
approach allows us to directly model consumabiles (i.e., fuel), and in doing so realistically represent
additional mission failure scenarios (e.g., running out of fuel).

During the cruise phase, the path of the spacecraft can be disturbed due to a number of causes (e.g.
micrometeoroid debris, solar winds). These “nuances” will require the spacecraft to perform a
correction, with its attitude thruster and ion engine consuming a certain amount of their propellant
reserves. If the cruise phase is successful, the spacecraft wakes up its remaining systems and begins
insertion into orbit. Propellant may also be consumed during orbital insertion. Both the ion engine and
attitude thrusters are subsequently required while the orbiter is at the target planet. Therefore, the
frequency of nuances during the cruise phase, along with the potential need to use the ion engine to
enter orbit, can result in termination of the mission. A typical time history plot of the amount of ion
engine (Xenon) propellant is shown below:
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In this particular realization, orbit was achieved around 1.5 years (and previous to that, some fuel was
used due to cruise phase disturbances), a small amount of fuel was used at insertion and then a
constant mount of fuel was used while in orbit. Shortly after orbit is achieved, the lander reached the
surface and the scientific mission began. However, just after three years, the orbiter failed (and hence
stopped using fuel). As a result the mission ended at that time.

Once on the surface, the scientific mission is intended to last three years. The lander has two key pieces
of scientific equipment on board. Successful completion of minimal mission requirements requires that
either these two instruments be active for the first year on the surface. Completion of all mission goals
requires both instruments to be active for three years on the surface. Hence, due to the failure of the
orbiter about 18 months after the beginning of the scientific mission on the surface, the particular
realization shown above would have been judged to have met only minimum mission requirements.

The key results for a simulation like this consist of the probability of meeting minimum and full mission
requirements. By using GoldSim’s causal analysis features, you could then look at those components
contributing to failures and potentially modify the design to increase the probability of mission success.
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Summary

This document briefly discussed how GoldSim, a dynamic probabilistic simulation program, can be used
to tackle complex reliability and risk assessment problems that cannot be easily or realistically
addressed using traditional modeling approaches.

In addition to computing traditional metrics for reliability (e.g., reliability and availability) and risk
assessment (e.g., the probability of specific consequences), GoldSim also catalogs and analyzes failure
scenarios, which allows for key sources of unreliability and risk to be identified (i.e., root cause analysis).

However, the true power of GoldSim is that it can do more than compute only these kinds of reliability
and risk management metrics. This is because GoldSim differs from the few existing simulation-based
approaches to reliability and risk assessment in that it combines powerful features for representing the
failure (and repair) of complex systems with the flexibility to represent the true dynamic complexity and
evolution of the entire system. That is, GoldSim is first and foremost a powerful and extremely flexible
general-purpose, probabilistic, dynamic simulator that has been used to simulate the behavior and
evolution of a wide variety of complex systems ranging from environmental systems (e.g., mines,
watersheds, waste disposal sites) to engineered systems (e.g., processing facilities, machines, space
missions) to business systems (e.g., companies, projects).

By combining these fundamental capabilities with the Reliability Module, a specialized extension for
dynamically modeling the failure (and repair) of engineered components, GoldSim makes it possible to
build “total system models” that can represent 1) evolving environmental conditions; 2) the realistic,
dynamic complexity of failure of components within the system (e.g., complex interdependencies,
failure rates that respond to evolving environmental conditions); and 3) the actual consequences of
failure (e.g., changes in throughput, costs, loss of life, and other measures of system performance).

An excellent way to explore GoldSim further is to request a free, fully-functional evaluation version of
the software from the GoldSim website (www.goldsim.com). When you install the software, PDF
documents of the user’s guides are installed with the software. This includes the Reliability Module
User’s Guide, which includes many examples. More detailed example applications (including the lunar
base and planetary exploration mission discussed above) are also available for download from the
GoldSim Model Library (http://www.goldsim.com/Library/Models/). Finally, you can always send
guestions to the GoldSim Help Desk at support@goldsim.com.
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