Comparison of RESRAD and GoldSim Platforms for Evaluation of NORM Disposal Sites

Authors: K. Catlett, P. Black, R. Perona, S. Van Sickle, G. Occhiogrosso, A. Fleury

www.neptuneinc.org

NORM Symposium • Dec 2020

Neptune Modeling Philosophy

- Keep it simple but not too simple
- Probabilistic models
 - Create more realistic, less conservative models
 - Allow full global sensitivity analysis to be performed
 - Reduce uncertainty in decisions
 - Optimize site performance
- Technically defensible, transparent, open, traceable

RESRAD-Onsite vs GoldSim

- RESRAD-Onsite is a purpose-built model for calculating dose and dose-based soil guidelines.
 - Well-tested and relatively simple to use, but limited to on-site exposure from a single, homogeneously-contaminated soil source.
- GoldSim is a general probabilistic Monte Carlo modeling platform, with tools for radionuclide transport.
 - Flexibility to address any transport pathways, waste geometry, and engineered systems.
 - GoldSim can be used for a variety of applications to support decision-making and risk analysis.

RESRAD-Offsite

RESRAD-Offsite is a newer member of the RESRAD family of software that provides better support for modeling subsurface radiological disposals. Functionality of RESRAD-Offsite additional to that provided in RESRAD-Onsite includes:

- A source term module for release of radionuclides with infiltration as an instantaneous, uniform, or 1st order rate process.
- Evaluation of groundwater and air dispersion transport, and dose calculations, for off-site receptors.

A GoldSim Performance Assessment Model

PA Models in GoldSim provide information that can be used for site licensing, waste removal. waste limit regulations, and waste acceptance criteria decisions.

Radon Modeling Comparison

- Radon flux is modeled using Fick's diffusion and a finite difference approach in both RESRAD and GoldSim.
- GoldSim integrates radon air diffusion with diffusion of other radionuclides in water and air, and ingrowth of radioactive progeny along the path of diffusion.
 - ²²²Rn parents move upwards via diffusion in pore water.
 - ²²²Rn decays as it moves upwards, allowing the evaluation of dose related to the buildup of ²²²Rn progeny (specifically, ²¹⁰Pb, ²¹⁰Po) in the cap.

EXAMPLES

- RCRA Subtitle C, Disposal Facility in Idaho
- Los Alamos National Laboratory, Material Disposal Areas A and T
- Disposal Facility Performance Assessment at Oak Ridge National Laboratory
- IAEA Model Comparisons: Zapadnoe Uranium Mill Tailings Site

Idaho Disposal Facility

- Limitations in previous RESRAD analysis overestimated dose because conceptual site model did not match RESRAD inherent structure.
- Objective was to improve previous site performance modeling and waste acceptance criteria by:
 - evaluation of site-specific environmental transport and exposure pathways;
 - reducing unrealistic protective biases.
- The RESRAD model "protectively" focused on groundwater pathways, even though there is compelling evidence that they are incomplete.

Pathways Comparison (1)

Transport pathway (Exposure route)	RESRAD	CSM
Infiltration to groundwater	×	—
Drinking water	×	—
Garden irrigation and livestock	(x	-
Irrigation 🛛 soil (ext, soil ing, produce, dust inh) ×	_
Cover erosion—sheet and rill erosion	×	×
Reduced cap thickness (radon inh)) ×	×
Cover erosion—gully erosion		-
Exposed waste (ext); locally enhanced infiltration	n	-
Gas-phase diffusion	×	×
Radon inhalation	×	×
Deposition of ²²² Rn decay products in cover (ext, soil ing, produce dust inh)) ,	×
Water-phase diffusion		×
Radionuclides in cover (ext, soil ing, produce, dust inh)	×
ext: external radiation		
ing: ingestion	- intentionally	not included
inh: inhalation (b	lank) not availa	ble to include

Pathways Comparison (2)

Transport pathway (Exposure route)	RESRAD	CSM
Plant root uptake by native plants		×
Deposition on ground surface (ext, soil ing, produce, dust inh)		×
Ingestion by cattle (meat ing)		×
Animal burrowing		×
Mixing of cover material (ext, soil ing, produce, dust inh)		×
Human intrusion (Cell 16: drilling of a water well)		×
Cuttings on surface or in mud pit (ext, soil ing, produce, dust inh)		×
Human intrusion (Cell 16: excavation for a residence)		×
Direct exposure to waste; subsequent exposure to excavated cap		×
material (ext, soil ing, dust inh)		
ext: external radiation		
g: ingestion – intentionally not included		
: inhalation (blank) not available to include		

Idaho Disposal Facility Results

- Decreased doses by more than an order of magnitude because of elimination of incomplete pathways and capability of building a site-specific model.
- Integrated Rn modeling in GoldSim increased Rn flux by about 3 times compared to previous RESRAD modeling.
- Optimize site by having a more realistic CSM.

LANL MDAs A&T Example

- Transport and dose modeling was conducted using the RESRAD-OFFSITE software package.
- Key assumptions resulted in doses to ~40,000 Ci of transuranics under a few feet of cover to be minimal:
 - During 1000 years of institutional control no deep-rooted plants, burrowing animals or human activity (besides trespasser) are allowed.
- Bottom line: RESRAD software was suitable for demonstrating that dose will be negligible for 1000+ yrs, under strict assumptions, but it cannot assess risk from burrowing animals and deep plants, which other models at the site have shown to be important.

Oak Ridge Disposal Facility Example

- RESRAD-OFFSITE was used to model groundwater pathway risks for a radioactive waste disposal facility Performance Assessment.
- RESRAD does not support dynamic cover evolution over time and so limited "what if" games were played to try to address system dynamics.
- Very limited probabilistic analyses were done because of RESRAD constraints.
- Bottom line: define project modeling and decision objectives and then select the best-suited platform instead of selecting RESRAD first, and then try to figure out ways to overcome its limitations.

Zapadnoe Uranium Mill Tailings Site

IAEA working group comparison of multiple modeling tools. Demonstration model. Species: Pb-210, Po-210, Ra-226, Rn-222, Th-230, U-234, U-238 **Exposure Receptors:** Onsite Worker, Offsite Resident **Exposure Pathways:** External Irradiation, Inhalation (radon & dust), Ingestion (fish, vegetables, soil)

GoldSim vs RESRAD in a Nutshell

RESRAD works well when model structure matches site and decision needs (e.g., screening assessment)

- Simple
- Default values
- Free
- Regulatory requirement

GoldSim

optimizes site performance and decision making

- Completely flexible
- Site-specific pathways or characteristics
- Fully probabilistic captures uncertainty
- Integrated radon transport

GoldSim Advantage

GoldSim supports:

- Evaluation of all potential site-specific pathways
- More flexible probabilistic analysis
- Optimization of long-term decision making, including future disposal, closure, and stewardship
 - where to dispose waste
 - how deep
 - cover type and structure
 - engineered systems
- Within-model documentation