Appendix A: Introduction to
Probabilistic Simulation

Our knowledge of the way things work, in society or in nature, comes trailing
clouds of vagueness. Vast ills have followed a belief in certainty.

Kenneth Arrow, | Know a Hawk from a Handsaw

Appendix Overview

This appendix provides a very brief introduction to probabilistic simulation (the quantification and propagation of
uncertainty). Because detailed discussion of this topic is well beyond the scope of this appendix, readers who are
unfamiliar with this field are strongly encouraged to consult additional literature. A good introduction to the
representation of uncertainty is provided by Finkel (1990) and a more detailed treatment is provided by Morgan
and Henrion (1990). The basic elements of probability theory are discussed in Harr (1987) and more detailed
discussions can be found in Benjamin and Cornell (1970) and Ang and Tang (1984).

In this Appendix

This appendix discusses the following:
o Types of Uncertainty
e Quantifying Uncertainty
e Propagating Uncertainty
o A Comparison of Probabilistic and Deterministic Analyses

o Appendix A References

- 1105 -

Types of Uncertainty

Types of Uncertainty

Many of the features, events and processes which control the behavior of a complex system will not be known or
understood with certainty. Although there are a variety of ways to categorize the sources of this uncertainty, for the
purpose of this discussion it is convenient to consider the following four types:

e Value (parameter) uncertainty: The uncertainty in the value of a particular parameter (e.g., a physical
property, or the development cost of a new product);

o Uncertainty regarding future events: The uncertainty in the ability to predict future perturbations of the
system (e.g., a strike, an accident, or an earthquake).

o Conceptual model uncertainty: The uncertainty regarding the detailed understanding and representation of
the processes controlling a particular system (e.g., the complex interactions controlling the water flow
through the subsurface); and

¢ Numerical model uncertainty: The uncertainty introduced by approximations in the computational tool used
to evaluate the system.

Incorporating these uncertainties into the predictions of system behavior is called probabilistic simulation or in
some applications, probabilistic performance assessment. Probabilistic simulation consists of explicitly
representing the uncertainty in the parameters, processes and events controlling the system and propagating this
uncertainty through the system such that the uncertainty in the results (i.e., predicted future performance) can be
quantified.

Quantifying Uncertainty
Understanding Probability Distributions

When uncertainty is quantified, it is expressed in terms of probability distributions. A probability distribution is a
mathematical representation of the relative likelihood of an uncertain variable having certain specific values.

There are many types of probability distributions. Common distributions include the normal, uniform and triangular
distributions, illustrated below:

.10

0.05

0.00
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Normal Distribution Uniform Distribution Triangular Distribution

All distribution types use a set of arguments to specify the relative likelihood for each possible value. For example,
the normal distribution uses a mean and a standard deviation as its arguments. The mean defines the value around
which the bell curve will be centered, and the standard deviation defines the spread of values around the mean. The
arguments for a uniform distribution are a minimum and a maximum value. The arguments for a triangular
distribution are a minimum value, a most likely value, and a maximum value.

The nature of an uncertain parameter, and hence the form of the associated probability distribution, can be either
discrete or continuous. Discrete distributions have a limited (discrete) number of possible values (e.g., 0 or 1; yes
or no; 10, 20, or 30). Continuous distributions have an infinite number of possible values (e.g., the normal, uniform

- 1106 -

Quantifying Uncertainty

and triangular distributions shown above are continuous). Good overviews of commonly applied probability
distributions are provided by Morgan and Henrion (1990) and Stephens et al. (1993).

There are a number of ways in which probability distributions can be graphically displayed. The simplest way is to
express the distribution in terms of a probability density function (PDF), which is how the three distributions
shown above are displayed. In simple terms, this plots the relative likelihood of the various possible values, and is
illustrated schematically below:

0.20

Probability that
value is
between 12 and
14 = area under
curve = 13.6%

g
siai o

2 4 6 & 10 12 14 16 18 20
Value

Prabability Density
))
- —
= [d)}

2
=
o0

2

o

=1
o

Note that the “height” of the PDF for any given value is not a direct measurement of the probability. Rather, it
represents the probability density, such that integrating under the PDF between any two points results in the
probability of the actual value being between those two points.

Note: Discrete distributions are described mathematically using probability mass functions (PMF), rather than
probability density functions. Probability mass functions specify actual probabilities for given values, rather
than probability densities.

An alternative manner of representing the same information contained in a PDF is the cumulative distribution
Sfunction (CDF). This is formed by integrating over the PDF (such that the slope of the CDF at any point equals the
height of the PDF at that point). For any value on the horizontal axis, the CDF shows the cumulative probability
that the variable will be less than or equal to that value. That is, as shown below, a particular point, say [12, 0.84],
on the CDF is interpreted as follows: the probability that the value is less than or equal to 12 is equal to 0.84
(84%):

o 10

(&)

C

L £ AR | | S
@ 08f

2 | Probability that |
it 06+ value is less |
g' . than or equal to

z [12=284% |
G 041 |
e 1 |
£ 02t

5 |
2

% o0 |

0 2 4 6 8 10 12 14 16 18 20
Value

By definition, the total area under the PDF must integrate to 1.0, and the CDF therefore ranges from 0.0 to 1.0.

A third manner of presenting this information is the complementary cumulative distribution function (CCDF). The
CCDF is illustrated schematically below:

- 1107 -

Quantifying Uncertainty

1.0

o]

c 081

o

-

]

= 061

. Probability

2 that value is

£ 047 greater than

3 12 = 16%

o

2 0.2t

I T e S e e
0.0 '

0 2 4 6 8 10 12 14 16 18 20
Value

A particular point, say [12, 0.16], on the CCDF is interpreted as follows: the probability that the value is greater
than 12 is 0.16 (16%). Note that the CCDF is simply the complement of the CDF; that is, in this example 0.84 is
equal to 1 —0.16.

Probability distributions are often described using quantiles or percentiles of the CDF. Percentiles of a distribution
divide the total frequency of occurrence into hundredths. For example, the 90th percentile is that value of the
parameter below which 90% of the distribution lies. The 50th percentile is referred to as the median.

Characterizing Distributions

Probability distributions can be characterized by their moments. The first moment is referred to as the mean or
expected value, and is typically denoted as p. For a continuous distribution, it is computed as follows:

u= / x f(x) dx
where f(x) is the probability density function (PDF) of the variable. For a discrete distribution, it is computed as:

N
B= Z xiP(xi)
i=1

where p(x;) is the probability of x;, and N is the total number of discrete values in the distribution.

Additional moments of a distribution can also be computed. The nth moment of a continuous distribution is
computed as follows:

pn = [6=)) ax

For a discrete distribution, the n'h moment is computed as:
N
pa= D (x — u)®p(x:)
i=1

The second moment is referred to as the variance, and is typically denoted as 62. The square root of the variance,

o, is referred to as the standard deviation. The variance and the standard deviation reflect the amount of spread or
dispersion in the distribution. The ratio of the standard deviation to the mean provides a dimensionless measure of
the spread, and is referred to as the coefficient of variation.

The skewness is a dimensionless number computed based on the third moment:

- 1108 -

Quantifying Uncertainty

M3
skewness = oy

o

The skewness indicates the symmetry of the distribution. A normal distribution (which is perfectly symmetric) has
a skewness of zero. A positive skewness indicates a shift to the right (and example is the log-normal distribution).
A negative skewness indicates a shift to the left.

The kurtosis is a dimensionless number computed based on the fourth moment:

kurtosis = ”—:
o

The kurtosis is a measure of how "fat" a distribution is, measured relative to a normal distribution with the same
standard deviation. A normal distribution has a kurtosis of zero. A positive kurtosis indicates that the distribution is
more "peaky" than a normal distribution. A negative kurtosis indicates that the distribution is "flatter" than a
normal distribution.

Specifying Probability Distributions

Given the fact that probability distributions represent the means by which uncertainty can be quantified, the task of
quantifying uncertainty then becomes a matter of assigning the appropriate distributional forms and arguments to
the uncertain aspects of the system. Occasionally, probability distributions can be defined by fitting distributions to
data collected from experiments or other data collection efforts. For example, if one could determine that the
uncertainty in a particular parameter was due primarily to random measurement errors, one might simply attempt to
fit an appropriate distribution to the available data.

Most frequently, however, such an approach is not possible, and probability distributions must be based on
subjective assessments (Bonano et al., 1989; Roberds, 1990). Subjective assessments are opinions and judgments
about probabilities, based on experience and/or knowledge in a specific area, which are consistent with available
information. The process of developing these assessments is sometimes referred to as expert elicitation.
Subjectively derived probability distributions can represent the opinions of individuals or of groups. There are a
variety of methods for developing subjective probability assessments, ranging from simple informal techniques to
complex and time-consuming formal methods. It is beyond the scope of this document to discuss these methods.
Roberds (1990), however, provides an overview, and includes a list of references. Morgan and Henrion (1990) also
provide a good discussion on the topic.

A key part of all of the various approaches for developing subjective probability assessments is a methodology for
developing (and justifying) an appropriate probability distribution for a parameter in a manner that is logically and
mathematically consistent with the level of available information. Discussions on the applicability of various
distribution types are provided by Harr (1987, Section 2.5), Stephens et al. (1993), and Seiler and Alvarez (1996).
Note that methodologies (Bayesian updating) also exist for updating an existing probability distribution when new
information becomes available (e.g., Dakins, et al., 1996).

Correlated Distributions

Frequently, parameters describing a system will be correlated (inter-dependent) to some extent. For example, if one
were to plot frequency distributions of the height and the weight of the people in an office, there would likely be
some degree of positive correlation between the two: taller people would generally also be heavier (although this
correlation would not be perfect).

The degree of correlation can be measured using a correlation coefficient, which varies between 1 and -1. A
correlation coefficient of 1 or -1 indicates perfect positive or negative correlation, respectively. A positive
correlation indicates that the parameters increase or decrease together. A negative correlation indicates that
increasing one parameter decreases the other. A correlation coefficient of 0 indicates no correlation (the parameters
are apparently independent of each other). Correlation coefficients can be computed based on the actual values of

- 1109 -

Quantifying Uncertainty

the parameters (which measures linear relationships) or the rank-order of the values of the parameters (which can
be used to measure non-linear relationships).

One way to express correlations in a system is to directly specify the correlation coefficients between various
model parameters. In practice, however, assessing and quantifying correlations in this manner is difficult.
Oftentimes, a more practical way of representing correlations is to explicitly model the cause of the dependency.
That is, the analyst adds detail to the model such that the underlying functional relationship causing the correlation
is directly represented.

For example, one might be uncertain regarding the solubility of two contaminants in water, while knowing that the
solubilities tend to be correlated. If the main source of this uncertainty was actually uncertainty in pH conditions,
and the solubility of each contaminant was expressed as a function of pH, the distributions of the two solubilities
would then be explicitly correlated. If both solubilities increased or decreased with increasing pH, the correlation
would be positive. If one decreased while one increased, the correlation would be negative.

Ignoring correlations, particularly if they are very strong (i.e., the absolute value of the correlation coefficient is
close to 1) can lead to physically unrealistic simulations. In the above example, if the solubilities of the two
contaminants were positively correlated (e.g., due to a pH dependence), it would be physically inconsistent for one
contaminant’s solubility to be selected from the high end of its possible range while the other’s was selected from
the low end of its possible range. Hence, when defining probability distributions, it is critical that the analyst
determine whether correlations need to be represented.

Variability and Ignorance

When quantifying the uncertainty in a system, there are two fundamental causes of uncertainty which are important
to distinguish: 1) that due to inherent variability; and 2) that due to ignorance or lack of knowledge. IAEA (1989)
refers to the former as “Type A uncertainty” and the latter as “Type B uncertainty”. These are also sometimes
referred to as aleatory and epistemic uncertainty, respectively.

Aleatory uncertainty results from the fact that many parameters are inherently variable (random or noisy) over time
such that their behavior can only be described statistically. Examples include the flow rate in a river, the price of a
stock or the temperature at a particular location.

Variability in a parameter can be expressed using frequency distributions. A frequency distribution displays the
relative frequency of a particular value versus the value. For example, one could sample the flow rate of a river
once an hour for a week, and plot a frequency distribution of the hourly flow rate (the x-axis being the flow rate,
and the y-axis being the frequency of the observation over the week).

Other parameters are not inherently variable over time, but cannot be specified precisely due to epistemic
uncertainty: we lack sufficient information or knowledge to specify their value with certainty. Examples include the
strength of a particular material, the mass of a planet, or the efficacy of a new drug.

A fundamental difference between these two types of uncertainty is that epistemic uncertainty (i.e., resulting from
lack of knowledge) can theoretically be reduced by studying the parameter or system. That is, since the variability
is due to a lack of knowledge, theoretically that knowledge could be improved by carrying out experiments,
collecting data or doing research. Aleatory uncertainty, on the other hand, is inherently irreducible. If the parameter
itself is inherently variable, studying the parameter further will certainly not do anything to change that variability.
This is important because one of the key purposes of probabilistic simulation modeling is not just to make
predictions, but to identify those parameters that are contributing the most to the uncertainty in results. If the
uncertainty in the results is due primarily to epistemic parameters, we know that we could (at least theoretically)
reduce our uncertainty in our results by gaining more information about those parameters.

It should be noted that parameters which have both kinds of uncertainty are not uncommon in simulation models.
For example, in considering the flow rate in a river, we know that it will be temporally variable (inherently random
in time so it can only be described statistically), but in the absence of adequate data, we will have uncertainty about

- 1110 -

Propagating Uncertainty

the statistical measures (e.g., mean, standard deviation) describing that variability. By taking measurements, we can
reduce our uncertainty in these statistical measures (i.e., what is the mean flow rate?), but we will not be able to
reduce the inherent variability in the flow.

Note that some quantities are variable not over time, but over space or within a collection of items or instances. An
example is the age of population. If you had a group of 1000 individuals, you could obtain the age of each
individual and create a frequency distribution of the age of the group. This kind of distribution is similar to the
example of the flow rate in a river discussed above in that both are described using frequency distributions (one
showing a frequency in time, and one showing a frequency of occurrence within a group). The age example,
however, is fundamentally different from an inherently random parameter. Whereas a distribution representing an
inherently random parameter truly is describing uncertainty (we cannot predict the value at any given time), a
distibution representing the age distribution is not describing uncertainty at all. It is simply describing a variability
within the group that we could actually measure and define very precisely.

It is critical not to combine variability like this with uncertainty and represent both using a single distribution. For
example, suppose that you needed to represent the efficacy of a new drug. The efficacy is different for different age
groups. Moreover, for each age group, there is scientific uncertainty regarding its efficacy. A common mistake
would be to define a single probability distribution that represents both the variability due to age and the
uncertainty due to lack of knowledge. Not only would it be difficult to define the shape of such a distribution in the
first place, this would produce simulation results that would be difficult, if not impossible, to interpret in a
meaningful way. The correct way to handle such a situation would be to disaggregate the problem (by explicitly
modeling each age group separately) and then define different probability distributions for each age group (with
each distribution representing only the scientific uncertainty in the efficacy for that age group).

Propagating Uncertainty

If the inputs describing a system are uncertain, the prediction of the future performance of the system is necessarily
uncertain. That is, the result of any analysis based on inputs represented by probability distributions is itself a
probability distribution.

In order to compute the probability distribution of predicted performance, it is necessary to propagate (translate) the
input uncertainties into uncertainties in the results. A variety of methods exist for propagating uncertainty. Morgan
and Henrion (1990) provide a relatively detailed discussion on the various methods.

One common technique for propagating the uncertainty in the various aspects of a system to the predicted
performance (and the one used by GoldSim) is Monte Carlo simulation. In Monte Carlo simulation, the entire
system is simulated a large number (e.g., 1000) of times. Each simulation is equally likely, and is referred to as a
realization of the system. For each realization, all of the uncertain parameters are sampled (i.e., a single random
value is selected from the specified distribution describing each parameter). The system is then simulated through
time (given the particular set of input parameters) such that the performance of the system can be computed.

This results in a large number of separate and independent results, each representing a possible “future” for the
system (i.e., one possible path the system may follow through time). The results of the independent system
realizations are assembled into probability distributions of possible outcomes. A schematic of the Monte Carlo
method is shown below:

- 1111 -

A Comparison of Probabilistic and Deterministic Simulation Approaches

System
parameters

Sample uncertain parameters

‘ " from probability distributions

Repeal Dynamically simulate Random evens
many system

fimes

Save Resulls

ssembie results
inta probability
distributions

A Comparison of Probabilistic and Deterministic
Simulation Approaches

Having described the basics of probabilistic analysis, it is worthwhile to conclude this appendix with a comparison
of probabilistic and deterministic approaches to simulation, and a discussion of why GoldSim was designed to
specifically facilitate both of these approaches.

In the deterministic simulation approach, the analyst, although they may implicitly recognize the uncertainty in the
various input parameters, selects single values for each parameter. Typically, these are selected to be “best
estimates” or sometimes “worst case estimates”. These inputs are evaluated using a simulation model, which then
outputs a single result, which presumably represents a “best estimate” or “worst case estimate”.

On the other hand, in a probabilistic simulation approach, the analyst explicitly represents the input parameters as
probability distributions, and propagates the uncertainty through to the result (e.g., using the Monte Carlo method),
such that the result itself is also a probability distribution.

One advantage of deterministic analyses is that they can typically incorporate more detailed components than
probabilistic analyses due to computational considerations (since complex probabilistic analyses generally require
time-consuming simulation of multiple realizations of the system).

Deterministic analyses, however, have a number of disadvantages:

o “Worst case” deterministic simulations can be extremely misleading. Worst case simulations of a system
may be grossly conservative and therefore completely unrealistic (i.e., they typically have an extremely low
probability of actually representing the future behavior of the system). Moreover, it is not possible in a
deterministic simulation to quantify how conservative a “worst case” simulation actually is. Using a highly
improbable simulation to guide policy making (e.g., “is the design safe?”) is likely to result in poor
decisions.

o “Best estimate” deterministic simulations are often difficult to defend. Because of the inherent uncertainty
in most input parameters, defending “best estimate” parameters is often very difficult. In a confrontational
environment, “best estimate” analyses will typically evolve into “worst case” analyses.

e Deterministic analyses do not lend themselves directly to detailed uncertainty and sensitivity studies. In
order to carry out uncertainty and sensitivity analysis of deterministic simulations, it is usually necessary to
carry out a series of separate simulations in which various parameters are varied. This is time-consuming
and typically results only in a limited analysis of sensitivity and uncertainty.

- 1112 -

Appendix A References

These disadvantages do not exist for probabilistic analyses. Rather than facing the difficulties of defining worst
case or best estimate inputs, probabilistic analyses attempt to explicitly represent the full range of possible values.
The probabilistic approach embodied within GoldSim acknowledges the fact that for many complex systems,
predictions are inherently uncertain and should always be presented as such. Probabilistic analysis provides a
means to present this uncertainty in a quantitative manner.

Moreover, the output of probabilistic analyses can be used to directly determine parameter sensitivity. Because the
output of probabilistic simulations consists of multiple sets of input parameters and corresponding results, the
sensitivity of results to various input parameters can be directly determined. The fact that probabilistic analyses
lend themselves directly to evaluation of parameter sensitivity is one of the most powerful aspects of this approach,
allowing such tools to be used to aid decision-making.

There are, however, some potential disadvantages to probabilistic analyses that should also be noted:

« Probabilistic analyses may be perceived as unnecessarily complex and difficult to understand. Although this
sentiment is gradually becoming less prevalent as probabilistic analyses become more common, it cannot be
ignored. It is therefore important to develop and present probabilistic analyses in a manner that is
straightforward and transparent. In fact, GoldSim was specifically intended to minimize this concern.

o The process of developing input for a probabilistic analysis can sometimes degenerate into futile debates
about the “true” probability distributions. This concern can typically be addressed by simply repeating the
probabilistic analysis using alternative distributions. If the results are similar, then there is not necessity to
pursue the "true" distributions further.

¢ The public (courts, media, etc.) typically does not fully understand probabilistic analyses and may be
suspicious of it. This may improve as such analyses become more prevalent and the public is educated, but
is always likely to be a problem. As a result, complementary deterministic simulations will sometimes be
required in order to illustrate the performance of the system under a specific set of conditions (e.g.,
“expected” or “most likely” conditions).

As this last point illustrates, it is important to understand that use of a probabilistic analysis does not preclude the
use of deterministic analysis. In fact, deterministic analyses of various system components are often essential in
order to provide input to probabilistic analyses. The key point is that for many systems, deterministic analyses
alone can have significant disadvantages and in these cases, they should be complemented by probabilistic
analyses.

Appendix A References

The references cited in this appendix are listed below.

Ang, A. H-S. and W.H. Tang, 1984, Probability Concepts in Engineering Planning and Design, Volume
1I: Decision, Risk, and Reliability, John Wiley & Sons, New York.

Bonano, E.J., S.C. Hora, R.L. Keaney and C. von Winterfeldt, 1989, Elicitation and Use of Expert
Judgment in Performance Assessment for High-Level Radioactive Waste Repositories, Sandia Report
SANDS89-1821, Sandia National Laboratories.

Benjamin, J.R. and C.A. Cornell, 1970, Probability, Statistics, and Decision for Civil Engineers,
McGraw-Hill, New York.

Dakins, M.E., J.E. Toll, M.J. Small and K.P. Brand, 1996, Risk-Based Environmental Remediation:
Bayesian Monte Carlo Analysis and the Expected Value of Sample Information, Risk Analysis, Vol. 16,
No. 1, pp. 67-79.

- 1113 -

Appendix A References

Finkel, A., 1990, Confronting Uncertainty in Risk Management: A Guide for Decision-Makers, Center for
Risk Management, Resources for the Future, Washington, D.C.

Harr, M.E., 1987, Reliability-Based Design in Civil Engineering, McGraw-Hill, New York.

TIAEA, 1989, Evaluating the Reliability of Predictions Made Using Environmental Transfer Models,
IAEA Safety Series No. 100, International Atomic Energy Agency, Vienna.

Morgan, M.G. and M. Henrion, 1990, Uncertainty, Cambridge University Press, New York.

Roberds, W.J., 1990, Methods for Developing Defensible Subjective Probability Assessments,
Transportation Research Record, No. 1288, Transportation Research Board, National Research Council,
Washington, D.C., January 1990.

Seiler, F.A and J.L. Alvarez, 1996, On the Selection of Distributions for Stochastic Variables, Risk
Analysis, Vol. 16, No. 1, pp. 5-18.

Stephens, M.E., B.W. Goodwin and T.H. Andres, 1993, Deriving Parameter Probability Density
Functions, Reliability Engineering and System Safety, Vol. 42, pp. 271-291.

-1114 -

Appendix B: Probabilistic
Simulation Details

Clever liars give details, but the cleverest don't.

Anonymous

Appendix Overview

This appendix provides the mathematical details of how GoldSim represents and propagates uncertainty, and the
manner in which it constructs and displays probability distributions of computed results. While someone who is not
familiar with the mathematics of probabilistic simulation should find this appendix informative and occasionally
useful, most users need not be concerned with these details. Hence, this appendix is primarily intended for the
serious analyst who is quite familiar with the mathematics of probabilistic simulation and wishes to understand the
specific algorithms employed by GoldSim.

In this Appendix

This appendix discusses the following:
o Mathematical Representation of Probability Distributions
o Correlation Algorithms
o Sampling Techniques
« Representing Random (Poisson) Events
o Computing and Displaying Result Distributions
o Computing Sensitivity Analysis Measures

« Appendix B References

- 1115 -

Mathematical Representation of Probability Distributions

Mathematical Representation of Probability
Distributions

Distributional Forms

The arguments, probability density (or mass) function (PDF or PMF), cumulative distribution function (CDF), and
the mean and variance for each of the probability distributions available within GoldSim are presented below.

Beta Distribution

The beta distribution for a parameter is specified by a minimum value (a), a maximum value (b), and two shape
parameters denoted S and T. The beta distribution represents the distribution of the underlying probability of
success for a binomial sample, where S represents the observed number of successes in a binomial trial of T total
draws.

Alternative formulations of the beta distribution use parameters a and f3, or a; and o, where S = o =0 and (T-S) =
p=a

Frequently the beta distribution is also defined in terms of a minimum, maximum, mean, and standard deviation.
The shape parameters are then computed from these statistics.

The beta distribution has many variations controlled by the shape parameters. It is always limited to the interval
(a,b). Within (a,b), however, a variety of distribution forms are possible (e.g., the distribution can be configured to
behave exponentially, positively or negatively skewed, and symmetrically). The distribution form obtained by
different S and T values is predictable for a skilled user.

PDF
) = g o _1a)T_1 (x —)51 (b — x)T-5
where
g — IOI(T - 8)

- I(T)
and

I'k) = / e v du
0

CDF
F(x) = Lz(e, B)
where I, (a,p) is the regularized incomplete beta function.

Mean

u=a+%(b—a)

- 1116 -

Mathematical Representation of Probability Distributions

Variance
S(T-S
0,2 — (b _ a)2 ()
T2 (T +1)
Notes

Within GoldSim, there are three ways to define a Beta distribution (three different distribution types from the drop-
list defining the distribution):

¢ Beta Distribution
¢ Generalized Beta Distribution
¢ BetaPERT Distribution

You can choose to specify S and T (Beta Distribution).

Alternatively, you can specify a mean, standard deviation, minimum and maximum (Generalized Beta
Distribution). In this case, GoldSim limits the standard deviations that can be specified as follows:

o <= 0.6 /u*(1—u*)

where
«_ p—a
F b-a
and

o
*
7= b —a

This constraint ensures that the distribution has a single peak and that it does not have a discrete probability mass at
either end of its range.

Finally, you can specify a minimum (a), maximum (b) and most likely value (c) (BetaPERT distribution). In this
case, GoldSim assumes shape parameters are as follows:

a=1+4c,
B=5—4c,
where
_c—a
= b—a

Note that in this case, the most likely value specified by the user is not mathematically the most likely value (but is
a very close approximation to it).

Note that if the BetaPERT is defined using the 10th and 90th percentile (instead of a minimum and a maximum)
the minimum and maximum are estimated through iteration.

- 1117 -

Mathematical Representation of Probability Distributions

Binomial Distribution

The binomial distribution is a discrete distribution specified by a batch size (n) and a probability of occurrence (p).
This distribution can be used to model the number of parts that failed from a given set of parts, where n is the
number of parts and p is the probability of the part failing.

PMF

P(x) = (Z) p(1-p)** x=0,1,2,3..

where
n\ n!
x/ x!(n—x)!
CDF
rw =3 (})ra-pe
4 i
i=0
Mean
4 =1np
Variance
2 _
o? = np(1 — p)

Boolean Distribution

The Boolean (or logical) distribution is a discrete distribution that requires a single input: the probability of being
true, p. The distribution takes on one of two values: False (0) or True (1).

PMF

_J1—-p x=0
P(x)_{p x=1
CDF

_J1—-p x=0
F(x)_{l x=1
Mean
u=p
Variance
o2 = p(1-p)

- 1118 -

Mathematical Representation of Probability Distributions

Cumulative Distribution

The cumulative distribution enables the user to input a piece-wise linear cumulative distribution function by simply
specifying value (xi) and cumulative probability (pi) pairs.

GoldSim allows input of an unlimited number of pairs, x;, p;. In order to conform to a cumulative distribution
function, it is a requirement that the first probability equal 0 and the last equal 1. The associated values, denoted X,
and x,,, respectively, define the minimum value and maximum value of the distribution.

PDF
0 x<XgOrx>X,
f(x) =< Pit1 —Pi X <X <Xyt
Xit+1 — Xj
CDF
0 x<Xp
Fx)={ pi+ (i1 — Py ox * XX
1 X > Xp
Mean
3 a4+ x) (P — i)
” ~ 2
i=1
Variance2
21 Gy =)
1
o’ ~ %f(xi) — 2
i=1

Log-Cumulative Distribution

The log-cumulative distribution enables the user to input a piece-wise logarithmic cumulative distribution function
by simply specifying value (xi) and cumulative probability (pi) pairs. Whereas in a cumulative distribution, the
density between values is constant (i.e., the distribution between values is uniform), in a log-cumulative, the
density of the log of the value is constant (i.e., the distribution between values is log-uniform).

The log-cumulative distribution enables the user to input a piece-wise logarithmic cumulative distribution function
by simply specifying value (x;) and cumulative probability (p;) pairs. Whereas in a cumulative distribution, the
density between values is constant (i.e., the distribution between values is uniform), in a log-cumulative, the
density of the log of the value is constant (i.e., the distribution between values is log-uniform).

GoldSim allows input of an unlimited number of pairs, xi, pi. In order to conform to a cumulative distribution
function, it is a requirement that the first probability equal 0 and the last equal 1. The associated values, denoted X,
and x,,, respectively, define the minimum value and maximum value of the distribution. Also, all values must be
positive.

- 1119 -

Mathematical Representation of Probability Distributions

PDF
0 x<XpOrx>xp

f(ﬂ={% % <x <Xy

CDF
° In In x < Xy

Xit1/X x/x;

F(x) = { bi ln((xijll//xi)) Pi+1 In (JEHC /}21) % < x < X1
1 X>Xn

Mean

un n—1 (Pi+1 — pi) (X1 — Xi)

i=1]-n(xi+1 / xi)

Variance

o ~ "z_‘i (Pi+1 - pi)(xi2+1 - xiz) _ #2
= 2In(xi41 /%)

Discrete Distribution

The discrete distribution enables the user to directly input a probability mass function for a discrete parameter.
Each of the n discrete values, x;, that may be assigned to the parameter, has an associated probability, p;, indicating
its likelihood to occur. To conform to the requirements of a probability mass function, the sum of the probabilities,
p;» must equal 1. The discrete distribution is commonly used for situations with a relatively small number of
possible outcomes.

PMF
P(x) =p

CDF
i
F(xi) =) _p
=1
Mean
r= Z Xipi
i=1

Variance

n
o? = inzpi - Il2
i=1

- 1120 -

Mathematical Representation of Probability Distributions

Exponential Distribution

The Exponential distribution is a continuous distribution specified by a mean value (1) which must be positive.
This distribution is typically used to model the time required to complete a task or achieve a milestone.

PDF
= { 5 220
0 z<0
CDF
F(x) = {é_eﬂ/u x20
Mean
7]
Variance
2

Extreme Probability Distribution

The Extreme Probability distribution provides the expected extreme probability level of a uniform distribution
given a specific number of samples (n). Because it represents a probability, by definition it has a minimum (a) of 0
and maximum (b) of 1. The distribution is specified as either a Minimum or a Maximum Extreme Probability
Distribution. These are equivalent to the Beta distribution with the following parameters:

Parameter Maximum Minimum

S n 1
(T-S) 1 -
PDF
_ 1 _ \S—1g1 _ \T-S-1
f(x) = —B(b)i (x—a)* " (b—x)
where
rS)r(r--)
B=_“Y/"\ =/
I'(T)
and

I'k) = / e "udu
0

- 1121 -

Mathematical Representation of Probability Distributions

CDF
No closed form

Mean
p=a+ %(b—a)

Variance

_ 2 S(T-5)
o=b-2) T2(T + 1)

Extreme Value Distribution

The Extreme Value distribution (also known as the Gumbel distribution) is used to represent the maximum or
minimum expected value of a variable. It is specified with the Location (m) and a Scale parameter (s). The Scale
parameter must be positive. The distribution is specified as either a Minimum or a Maximum Extreme Value
Distribution.

PDF (Maximum)
Z

f(x) = ge_’

where

z=e

PDF (Minimum)
Z

f(x) = ;e_z

where

zZ = e(’:;")

CDF (Maximum)

F(x)=e*

CDF (Minimum)

Fx)=1—-¢"

Mean (Maximum)
p=m+0.57722 s
Mean (Minimum)

p=m—0.57722 s

- 1122 -

Mathematical Representation of Probability Distributions

Variance (Maximum and Minimum)

2 — (sm)?
6

Gamma Distribution

The gamma distribution is most commonly used to model the time to the kth event, when such an event is modeled
by a Poisson process with rate parameter A. Whereas the Poisson distribution is typically used to model the number
of events in a period of given length, the gamma distribution models the time to the kth event (or alternatively, the
time separating the kth and kh+1 events).

The gamma distribution is specified by the Poisson rate variable, A, and the event number, k. The random variable,
denoted as x, is the time period to the kth event. Within GoldSim, the gamma distribution is specified by the mean
(p) and the standard deviation (o). A and k can be expressed in terms of these as follows:

2

J7s
k - ?

I
A= —

o2
PDF

AO)x k—-1_.-Xx
£(x) = AP e
I'(k)

where

[o.°]
I'k) = / e "u*du (gamma function)
0

CDF

_ Tk, Ax)
= "rag
where

I'k,x) = / e "u*ldu (incomplete gamma function)
0

Mean
p (specified directly)
Variance

o? (o specified directly)

- 1123 -

Mathematical Representation of Probability Distributions

Notes

If k is near zero, the distribution is highly skewed. For k=1, the gamma distribution reduces to an exponential
distribution with mean of 1/A. If k = n/2 and A= '%, the distribution is known as a chi-squared distribution with n
degrees of freedom.

Note: If the mean value (in terms of SI units) is less than 1E-13 or the ratio of the standard deviation to the
mean is less than 0.1, the gamma is approximated as a normal distribution (truncated such that it is never less
than 0).

Negative Binomial Distribution

The negative binomial distribution is a discrete distribution specified by a number of successes (n), which can be
fractional, and a probability of success (p). This distribution can be used to model the number of failures that occur
when trying to achieve a given number of successes, and is used frequently in actuarial models.

PMF
x+n—1 .
P(x) = (X)p"(l —-p) x=0,1,2,3..

where

(x+n—1) _ (x+n-—1)!

x xl(n—1)!
CDF
n X i+ n—1 i

Fe =03 (])a-n)
Mean
n(1 —p)

P
Variance
n(l —p)

p?
Normal Distribution

The normal distribution is specified by a mean (i) and a standard deviation (c). The linear normal distribution is a
bell shaped curve centered about the mean value with a half-width of about four standard deviations. Error or
uncertainty that can be higher or lower than the mean with equal probability may be satisfactorily represented with
a normal distribution. The uncertainty of average values, such as a mean value, is often well represented by a
normal distribution, and this relation is further supported by the Central Limit Theorem for large sample sizes.

- 1124 -

Mathematical Representation of Probability Distributions

CDF

No closed form solution
Mean

p (specified directly)
Variance

o? (o specified directly)

Log-Normal Distribution

The log-normal distribution is used when the logarithm of the random variable is described by a normal
distribution. The log-normal distribution is often used to describe environmental variables that must be positive and
are positively skewed.

In GoldSim, the log-normal distribution may be based on either the true (arithmetic) mean (n) and standard
deviation (o), or on the geometric mean (identical to the median) and the geometric standard deviation. Thus, if the
variable x is distributed log-normally, the mean and standard deviation of log x may be used to characterize the
log-normal distribution. (Note that either base 10 or base e logarithms may be used).

PDF

f) = — L3 (%F)
(x\/2m

where

(is referred to as the shape factor.

¢=h

2
1+ (%)] (variance of In x)

A=In(p) — %Cz (expected value of In x)

CDF
No closed form solution

Mean (Arithmetic)

L= exp [A + %Cz]

- 1125 -

Mathematical Representation of Probability Distributions

The mean computed by the above formula is the expected value of the log-normally distributed variable x and is a
function of the mean and standard deviation of In(x). The mean value can be estimated by the arithmetic mean of a
sample data set.

Variance (Arithmetic)
o® = p? [exp(¢®) — 1]

The variance computed by the above formula is the variance of the log-normally distributed variable x. It is a
function of the mean of x and the standard deviation of In(x). The variance of x can be estimated by the sample
variance computed arithmetically.

Notes

Other useful formulas:

Geometric mean = e*

Geometric standard deviation = ¢

A commonly used descriptor for a log-normal distribution is its Error Factor (EF), where the EF is defined as
(geometric standard deviation) " 1.645.

90% of the distribution lies between Median/EF and Median*EF.

Pareto Distribution

The Pareto distribution is a continuous, long-tailed distribution specified by a shape factor (a) and a scale (b). The
scale is both the minimum value and the mode. The shape parameter and the scale parameter must be greater than
zero. This distribution can be used to model things like network traffic in a telecommunications system or income
levels in a particular country.

PDF

ab?
f(x) = ¢ xatl x2b

0 x<b
CDF

b a

0 x<b

Mean
_ab
k= a—1
Variance
ab?

P B
(a-12(a-2)

- 1126 -

Mathematical Representation of Probability Distributions

Pearson Type Il Distribution

Often used in financial and environmental modeling, the Pearson Type III distribution is a continuous distribution
specified by location (a), scale () and shape (p) parameters. Both the scale and shape parameters must be positive.

Note that the Pearson Type III distribution is equivalent to a gamma distribution if the location parameter is set to
Zero.

PDF

£(x) = Oﬂrl(p)(xﬂa)p_le(%) x> a

where

I'k) = / e"u*ldu (gamma function)
0

CDF

T (p, =2
Pl = (i)‘(p;)
where

I'k,x) = / e "u*ldu (incomplete gamma function)
0

Mean
p=a+ph

Variance
0_2 — pﬂZ
Poisson Distribution

The Poisson distribution is a discrete distribution specified by a mean value, u. The Poisson distribution is most
often used to determine the probability for one or more events occurring in a given period of time. In this type of
application, the mean is equal to the product of a rate parameter, A, and a period of time, . For example, the
Poisson distribution could be used to estimate probabilities for numbers of earthquakes occurring in a 100 year
period. A rate parameter characterizing the number of earthquakes per year would be needed for input to the
distribution. The time period would simply be equal to 100 years.

PMF

e Hu*

P(x) = x!

x=0,1,2,3...

- 1127 -

Mathematical Representation of Probability Distributions

CDF

N
F — oM r
(x)=e ;H

Mean

n=Aw

Variance

o = 7

Student’s t Distribution

The Student’s t distribution requires a single input: the number of degrees of freedom, v, which equals the number
of samples minus one. It is it symmetric around zero and bell-shaped. It is similar to the standard Normal
distribution (mean 0, SD 1), but with heavier tales. As v — oo it becomes the standard Normal.

PDF
r(5) e\
= Jrerm (0 5)

where
oo

I'k) = / e "u*ldu (gamma function)
0

CDF

1 2
rer) (3.722%-2)

2 S (v)2)

F®=%+ﬂ(

where

Fy is the hypergeometric function.

Mean
=0
Variance

o=~
v—2

- 1128 -

Mathematical Representation of Probability Distributions

Sampled Result Distribution

The sampled result distribution allows you to construct a distribution using observed results. GoldSim generates a
CDF by sorting the observations and assuming that a cumulative probability of 1/(Number of Observations) exists
between each data point. If there are multiple data points at the same value, a discrete probability equal to (N)/
(Number of Observations) is applied at the value, where N is equal to the number of identical observations.

If the Extrapolation option is cleared, a discrete probability of 0.5/(Number of observations) is assigned to the
minimum and maximum values. When the extrapolation option is selected, GoldSim extends the generated CDF to
cumulative probability levels of 0 and 1 using the slope between the two smallest and two largest unique
observations.

Triangular Distribution

The triangular distribution is specified by a minimum value (a), a most likely value (b), and a maximum value (c).
Note that if the triangular is defined using the 10th and 90t percentile (instead of a minimum and a maximum) the
minimum and maximum are estimated through iteration.

PDF
M <x<b
(b—a)(c—a)
f(x) = -
)=y _2-® | <.
(c —b)(c—a)
0 x<aorx>c
CDF
(0 x<a
PRy
& anSb
(b—a)(c—a)
F(x) = < (c—x)2
1-— b<x<c
(c—b)(c—a)
1 x>c
Mean
_a+b+c
3
Variance

, a’+b®+c?2—ab—ac—bc
B 18

Log-Triangular Distribution

The log-triangular distribution is used when the logarithm of the random variable is described by a triangular
distribution. The minimum (a), most likely (b), and maximum (c) values are specified in linear space. Note that if
the log-triangular is defined using the 10th and 90t percentile (instead of a minimum and a maximum) the
minimum and maximum are estimated through iteration.

- 1129 -

Mathematical Representation of Probability Distributions

PDF
2 ln(x/a)
RN B v asx<h
x In(c/a)In(c/b) b<x<ec
0 x<aorx>c
CDF
0 x<a
F(x) =1 In(b/a)In(c/a) <x<b
2
LT S
In(x/a)ln(c/b) <
! x>c
Mean

b= dil{a+ blln(b/a) — 1]} + d—22{° + blln(b/c) — 1]}

Variance

o? = %{% + %[m(b/a) - H}+ :—2{% + %[ln(b/c) _ %]}—,ﬂ

where
d; = In(c/a)ln(b/a)
and

d; = In(c/a)In(c/b)

Uniform Distribution

The uniform distribution is specified by a minimum value (a) and a maximum value (b). Each interval between the
endpoints has equal probability of occurrence. This distribution is used when a quantity varies uniformly between
two values, or when only the endpoints of a quantity are known.

PDF

; a<x<b
0 x<aorx>b

- 1130 -

Mathematical Representation of Probability Distributions

CDF
0 x<a
F(x) = E:a a<x<b
1 x>Db
Mean
_b+a
b=
Variance
, (b—a)?
o= —
12

Log-Uniform Distribution

The log-uniform distribution is used when the logarithm of the random variable is described by a uniform
distribution. Log-uniform is the distribution of choice for many environmental parameters that may range in value
over two or more log-cycles and for which only a minimum value and a maximum value can be reasonably
estimated. The log-uniform distribution has the effect of assigning equal probability to the occurrence of intervals
within each of the log-cycles. In contrast, if a linear uniform distribution were used, only the intervals in the upper
log-cycle would be represented uniformly.

PDF
; a<x<b
f(x) =4 xIn(b/a) - =
0 x<aorx>hb
CDF
0 x<a
In
Fa) =4 208y
In(b/a)
1 x>b
Mean
_ b—a
= n(b/a)
Variance

o2 = b? — a2 _(b—a.)2
~ 21n(b/a) In(b/a)
Weibull Distribution

The Weibull distribution is often used to characterize failure times in reliability models. However, it can be used to
model many other environmental parameters that must be positive. There are a variety of distribution forms that

- 1131 -

Correlation Algorithms

can be developed using different values of the distribution parameters.

The Weibull distribution is typically specified by a minimum (location) value (€), a scale (or characteristic life)
parameter (B), and a shape(or slope) parameter (o). The random variable must be greater than 0 and also greater
than the minimum value, €.

Within GoldSim, the Weibull is defined by €, a, and the mean - €. As shown below, the mean can be readily
computed as a function of €, a, and f.

PDF

1
u=e+ﬂI‘(1+E)

Variance

SRUSHRIE
Representing Truncated Distributions

Several distributions in GoldSim can be truncated at the ends (normal, log-normal, Gamma, and Weibull). That is,
by specifying a lower bound and/or an upper bound, you can restrict the sampled values to lie within a portion of
the full distribution’s range.

The manner in which truncated distributions are sampled is straightforward. Because each point in a full
distribution corresponds to a specific cumulative probability level between 0 and 1, it is possible to identify the
cumulative probability levels of the truncation points. These then define a scaling function which allows sampled
values to be mapped into the truncated range.

In particular, suppose the cumulative probability levels for the lower bound and upper bound were L and U,
respectively. Any sampled random number R (representing a cumulative probability level between 0 and 1) would
then be scaled as follows:

L + R(U-L)

This resulting "scaled" cumulative probability level would then be used to compute the sampled value for the
distribution. The scaling operation ensures that it falls within the truncated range.

Correlation Algorithms

Several GoldSim elements that are used to represent uncertainty or stochastic behavior in models permit the user to
define correlations between elements or amongst the items of a vector-type element.

- 1132 -

Correlation Algorithms

To generate sampled values that reflect the specified correlations GoldSim uses copulas and the Iman and Conover
methodology.

A copula is a function that joins two or more univariate distributions to form a multivariate distribution. As such, it
provides a method for specifiying the correlation between two variables. Copulas are described in detail by
Embrechts, Lindskog and McNeil (2001).

GoldSim uses three different methods to generate correlated values: the Gaussian copula, the t-distribution copula
and the Iman and Conover method. When a Stochastic element is correlated to itself, or to another Stochastic
element, GoldSim uses the Gaussian copula to generate the correlated value. A vector-type Stochastic or History

Generator can use the Gaussian copula, the t-distribution copula, or the Iman and Conover method to generate
correlated values.

The Gaussian copula produces values where the correlation between variables is stronger towards the middle of the
distributions than it is at the tails. The plot below shows the values for two variables (uniform distributions between
0 and 1) generated using the Gaussian copula with a correlation coefficient of 0.9:

Stachastic1[1]

Stochastic1[2]

A t-distribution copula produces a correlation that is stronger at the tails than in the middle. The plot below shows
the values for the two variables generated using the t-distribution copula for the same variables with a correlation
coefficient of 0.9 and the Degrees of Freedom setting in the copula of 1):

Stochastic1[1]

Stochastic1[2]

The t-distribution’s form is often what is observed in the real world: correlations at the extremes (e.g. representing

a rare, but significant event such as a war) tend to be higher than correlations in the middle (representing the higher
variability in more common occurrences).

- 1133 -

Sampling Techniques

The Degrees of Freedom setting controls the tail dependency in the copula. A low value produces stronger
dependence in the tails, while higher values produce stronger correlations in the middle of the distributions. This
means that a t-distribution copula with a high number of Degrees of Freedom will begin to behave like a Gaussian
copula.

One of the weaknesses of the copula approach to generating correlated samples is that it does not respect Latin
Hypercube Sampling (with the exception of the first item in a vector-type stochastic where the Gaussian copula is
used to generate sampled values).

The Iman and Conover approach is designed to produce a set of correlated items that each respect Latin Hypercube
sampling. Complete details on the algorithm’s methodology can be found in Iman and Conover (1982).

Its behavior is similar, but not identical, to a Gaussian for the first sample:

Stachastic1[1]

Stochastic1[2]

However, if the element is resampled during a realization, elements that use the Iman and Conover approach will
use the Gaussian copula to generate the second and subsequent sets of sampled data.

Sampling Techniques

This section discusses the techniques used by GoldSim to sample elements with random behavior. These include
the following GoldSim elements:

 Stochastic

¢ Random Choice

e Timed Event Generator

« Event Delay

o Discrete Change Delay

« History Generator

« Source (in the Radionuclide Transport Module)
e Action element (in the Reliability module)

« Function element (in the Reliability module)

After first discussing how GoldSim generates random numbers in order to sample these elements, two enhanced
sampling techniques provided by GoldSim (Latin Hypercube sampling and importance sampling) are discussed.

- 1134 -

Sampling Techniques

Generating Random Numbers to Sample Elements

In order to sample an element (we will simplify the discussion here by using a Stochastic element as an example
rather than one of the other types of elements), GoldSim starts with the CDF of the distribution that we want to
sample. Below is a CDF for a Normal distribution with a mean of 10m and a standard deviation of 2m:

= = o ol
i [ap] oo (=]

5
%)

Probability of Not Exceeding

=2
=
o

2 4 6 8 10 12 14 16 18 20
Value (m)

To randomly sample this distribution, we simply need to do the following:
1. Obtain a random number (i.e., a number between 0 and 1).

2. Use the CDF to map that random number to the corresponding sampled value.

So, for example, in the CDF above, a random number of about 0.2 would correspond to a sampled value of about
8.3m.

As can be seen, this sampling process itself is conceptually very simple. The more complicated part involves
obtaining the random number needed to sample the element. That is, in order to carry out Monte Carlo simulation,
GoldSim (and any Monte Carlo simulator) needs to consistently generate a series of random numbers.

In GoldSim, the process consists of the following components:

« Several different types of random number seeds. You can simply think of a random number seed as an
integer number. It actually consists of a pair of long (32-bit) integers, but that is not important to the
discussion that follows.

o Random numbers. A random number, as used here, has a specific definition: it is a real number between 0
and 1.

o A seed generator. This is an algorithm that takes as input one random number seed and randomly generates
a new random number seed. A particular value for the input seed always generates the same output seed,
but different input seeds generate different output seeds.

o A random number generator. This is another algorithm. It takes as input one random number seed and
generates a random number. A particular value for the random number seed always generates the same
random number, but different random number seeds generate different random numbers.

Within GoldSim, there are several types of random number seeds:

- 1135 -

Sampling Techniques

o The model itself (as well as any SubModel) has a run seed. If you choose to Repeat Sampling Sequences
(an option on the Monte Carlo tab of the Simulation Settings dialog), this seed is (reproducibly) created
based on an integer number that can be edited by the user. If you do not Repeat Sampling Sequences, it is
randomly created based on the computer’s system clock.

o The realization seed is a mutable seed that is initialized with the run seed and then updated for each
realization.

« Each Stochastic element (as well as other elements that behave probabilistically) has its own random
number seed. This is referred to as the element seed. This seed is created (in a random manner, based on the
system clock) when the element is first created.

Note: No two elements in a GoldSim model can have the same element seed. This means that if an element is
copied and pasted into a model where no elements have the same seed value, its seed will be unchanged.
However, if it is pasted into the same model, or into a model where another element already has that seed
value, one of the elements with the same seed value will be given a new unique seed. (Element seeds can be
displayed by selecting the element in the graphics pane and pressing Ctrl-Alt-Shift-F12).

« For every element that behaves probabilistically), the realization seed and the element seed are combined
together to create a combined seed for that element. It is this combined seed that is used to generate a
random number using a random number generator.

This random number seed structure is illustrated below:

(i Soed | Reatin
i Combined
Seed (i,j)
Element —
Seed (j)

The run seed and element seeds are constant during a simulation (they never change). The run seed is marked
using a dashed line to indicate that although it is constant during a simulation, it can be changed by the user. The
element seed (which is different for each element j) is created when the element is created and cannot be changed.
As we shall see below, however, the realization seeds and combined seeds are not constant during a simulation but
change as the simulation proceeds.

So given all of this information, let’s describe how GoldSim carries out a Monte Carlo simulation by considering a
very simple model consisting of a single Stochastic element that is resampled every day, with the model being run
for multiple realizations:

1. At the beginning of the simulation, GoldSim has a value for the run seed, and a single element seed.

2. At the beginning of the simulation (assuming we are repeating sampling sequences), the run seed is used to
initialize a realization seed.

- 1136 -

Sampling Techniques

3. At the beginning of each realization, we do the following:

a. The current realization seed is input int the seed generator to generate a new realization seed for
this realization.

b. The realization seed is combined with the element seed to create a combined seed for the element.
c. Now that we have the combined seed, two things happen:

i. The combined seed is input into the random number generator to generate a random number
for the element. This random number is then mapped to the CDF to obtain a sampled value
for the element.

ii. The combined seed is input into the seed generator to generate a new combined seed that we
will use the next time we need a random number.

d. Whenever we need to resample the element during the realization (in this case every day), we need a
new random number. To do so, every day we repeat steps i and ii above.

This same logic is shown schematically below:

Begin Simulation

!

Use the run seed to create a realization
seed

!

Combine the realization seed and the
element seed to create a combined seed

v

Use the combined seed to generate a
random number whenever element needs
to be sampled

Use the random number and the element’s

e 2 CDF to obtain a sampled value
Step through

time *

Use the combined seed to generate a new
combined seed

Realization
complete?

Yes

Simulation
complete?

No

Loop
through
realizations

End simulation

Start next realization by using current
realization seed to generate a new
realization seed

Note: GoldSim’s random number generation process is based on a method presented by L’Ecuyer (1988). As
pointed out above, each seed actually consists of two long (32-bit) integers. When random numbers are
generated, each of the integers cycles through a standard linear congruential sequence, with different constants
used for the two sequences (so that their repeat-cycles are different). The random numbers that are generated
are a function of the combination of the two seeds, so that the length of their repeat period is extremely long.

Now let’s consider the various options on the Monte Carlo tab of the Simulation Settings dialog:

- 1137 -

Sampling Techniques

Simulation Settings...

Time MonteCarlo Globals Information

Define Monte Carlo options to carry out a probabilistic simulation, and
‘!’ spedify the sampling metheod for Stochastic variables.

(®) Probabilistic Simulation

Realizations: | 1 = Result Options...

[Irun the following Realization only: Realization: | 1 =

Use Latin Hypercube Sampling Use random points in strata v

Repeat Sampling Sequences Random Seed: | 1

[5pecify Realization Weights:

() Deterministic Simulation

Result Size: 0 byte histories, 0 byte final values

Cancel Help

In particular, we will focus on just two fields: Repeat Sampling Sequences and Random Seed. These two fields
impact the run seed in the following ways:

o If Repeat Sampling Sequences in checked, you can specify a Random Seed. The Random Seed is used to
create the run seed.

o If Repeat Sampling Sequences is cleared, the run seed is created “on the fly” using the system clock. As a
result, it is different every time the model is run.

These facts, combined with the logic outlined above, can be used to describe exactly how elements will be sampled
in various models under any set of circumstances. In particular:

« If Repeat Sampling Sequences is checked (the default), as long as you do not modify the model, you will
get the same results (i.e., the same random numbers will be used) if you run the model today, and then run
it again tomorrow. This is because the run seed is unchanged.

o Similarly, if Repeat Sampling Sequences is checked and you copy a model to someone else (and they do
not make any changes), they will get the same results as you.

o If Repeat Sampling Sequences is checked, but the Random Seed is changed (e.g., from 1 to 2), you will
get different results (i.e., different random numbers will be used). This is because the run seed is different.
If you then change the Random Seed back to the original value, you will reproduce the original results.

« If Repeat Sampling Sequences is cleared, every time you run the model you will get different results (i.e.,
different random numbers will be used). This is because the run seed is different

o Iftwo people simultaneously build the same simple model with the exact same inputs (including the same
Random Seed), the results will still be different (i.e., different random numbers will be used). This is
because the element seeds will be different.

o If the user selects the option to Run the following Realization only, such as realization 16, GoldSim
simply iterates through the process the necessary number of times prior to starting the specified realization.

- 1138 -

Sampling Techniques

Latin Hypercube Sampling

GoldSim provides an option to implement a Latin Hypercube sampling (LHS) scheme (in fact, it is the default
when a new GoldSim file is created). The LHS option results in forced sampling from each “stratum” of each
parameter.

The following elements use LHS sampling:
« Stochastic
« Random Choice
« Timed Event Generator
e Time Series (when time shifting using a random starting point)
e Action (in the Reliability Module)
o Function (in the Reliability Module)

Each element’s probability distribution (0 to 1) is divided into up to 10000 equally likely strata or slices (actually,
the lesser of the number of realizations and 10000). The strata are then “shuffled” into a random sequence, and a
random value is then picked from each stratum in turn. This approach ensures that a uniform spanning sampling is
achieved.

Note: If possible, GoldSim will attempt to create LHS sequences where subsets are also complete LHS
sequences. This means that if the total number of realizations is an even number, the first half and second half
of the realizations are complete LHS sequences. If the total number of realizations is divisible by 4 or 8, that
fraction of the total number of realizations, run in sequence, will be complete LHS sequences. This property of
GoldSim’s LHS sequences is sometimes useful for statistical purposes and also permits a user to extract a valid
LHS sequence from a partially completed simulation by screening realizations. The details of this approach are
discussed below (“Latin Hypercube Subsets™).

Note that each element has an independent sequence of shuffled strata that are a function of the element’s internal
random number seed and the number of realizations in the simulation. If the number of realizations exceeds 10,000,
then at the 10,001st realization each element makes a random jump to a new position in its strata sequence. A
random jump is repeated every 10,000 realizations.

If you select “Use mid-points of strata” in the Simulation Settings dialog in models with less than 10,000
realizations, GoldSim will use the expected value of the strata selected for that realization. (Even if this option is
selected, in simulations with greater than 10,000 realizations, the 10,001 and subsequent realizations will use
random values from within the strata selected for that realization.) Using mid-points provides a slightly better
representation of the distribution, but without the full randomness of the original definition of Latin Hypercube
sampling (as described by McKay, Conover and Beckman, 1979).

If you select “Use random points in strata” in the Simulation Settings dialog, GoldSim also picks a random value
from each stratum.

Note: LHS is only applied to the first sampled random value in each realization. Subsequent samples will not
use LHS.

LHS appears to have a significant benefit only for problems involving a few independent stochastic parameters,
and with moderate numbers of realizations. In no case does it perform worse than true random sampling, and
accordingly LHS sampling is the default for GoldSim.

- 1139 -

Sampling Techniques

Note that the binary subdivision approach (described in more detail below) and the use of mid-stratum values are
GoldSim-specific modifications to the original description of Latin Hypercube Sampling, as described in McKay,
Conover and Beckman (1979).

Latin Hypercube Subsets

In order to allow users to do convergence tests, GoldSim’s LHS sampling automatically organizes the LHS strata
for each random variable so that binary subsets of the overall number of realizations each represent an independent
LHS sample over the full range of probabilities.

For example, if the user does 1,000 realizations, GoldSim will generate strata such that:

o Realizations 1-125 represent a full LHS sample with 125 strata. Realizations 126-250, 251-375, etc. through
876-1000 also represent full LHS samples with 125 strata each.

o Also, realizations 1-250, 251-500, 501-750, and 751-1000 represent full LHS samples with 250 strata each.
e And, realizations 1-500 and 501-1000 represent full LHS samples with 500 strata each.

The generation of binary subsets is automatic, and is carried out whenever the total number of realizations is an
even number. Up to 16 binary subsets will be generated, if the number of realizations can be subdivided evenly
four times. For example, if the total number of realizations was 100 then GoldSim would generate 2 subsets of 50
strata each and 4 subsets of 25 strata. If the total number of realizations was 400 then GoldSim would generate 2
subsets of 200 strata, 4 subsets of 100 strata, 8 subsets of 50 strata, and 16 subsets of 25 strata.

The primary purpose of this sampling approach is to use the subsets to carry out statistical tests of convergence.
For example, the mean of each of the subsets of results could be evaluated and a t-test used to estimate statistics of
the population mean, as described in Iman (1982). Rather than carrying out a set of independent LHS simulations
using different random seeds, this approach allows the user to run a single larger simulation, with the benefits of a
better overall representation of the system’s result distribution, while still being able to test for convergence and to
generate confidence bounds on the results. (A secondary benefit of the binary sampling approach is that if a
simulation is terminated partway through it should have a slightly greater likelihood of having uniform sampling
over the completed realizations than normal Latin Hypercube sampling would.)

The algorithm for assigning strata to the binary subsets is quite simple. For each pair of strata (e.g., 1st and 2nd;
3rd and 4th), the first member of the pair is randomly assigned to one of two “piles” (“left” or “right”), and the
second member is assigned to the opposite pile. That is, conceptually, it can be imagined that the full set of strata is
sent one at a time to a ‘flipper’ that randomly chooses ‘left’ or ‘right’ on its first, third, fifth etc. activations, and on
its second, fourth, sixth etc. activations chooses the opposite of the previous value.

For the case of one binary subdivision of a total of N strata, the algorithm goes through the strata sequentially
from lowest to highest, and passes them to a flipper that generates two ‘piles’ of strata. Each pile will therefore
randomly contain one of the first two strata, one of the second two, and so on. Thus, each pile will contain one
sample from each of the strata that would have been generated if only Ns /2 total samples were to be taken. The
full sampling sequence is generated by randomly shuftling each pile and then concatenating the two sequences.

For four binary subdivisions the same approach is extended, with the first flipper passing its ‘left” and ‘right’
outputs to two lower-level flippers. This results in four ‘piles’ of strata, which again are just randomly shuffled and
then concatenated. The same approach is simply extended to generate eight or sixteen strata where possible.

Importance Sampling

For risk analyses, it is frequently necessary to evaluate the low-probability, high-consequence end of the
distribution of the performance of the system. Because the models for such systems are often complex (and hence
need significant computer time to simulate), and it can be difficult to use the conventional Monte Carlo approach to
evaluate these low-probability, high-consequence outcomes, as this may require excessive numbers of realizations.

- 1140 -

Sampling Techniques

To facilitate these type of analyses, GoldSim allows you to utilize an importance sampling algorithm to modify the
conventional Monte Carlo approach so that the high-consequence, low-probability outcomes are sampled with an
enhanced frequency. During the analysis of the results which are generated, the biasing effects of the importance
sampling are reversed. The result is high-resolution development of the high-consequence, low-probability "tails"
of the consequences, without paying a high computational price.

The following elements permit importance sampling:
« Stochastic
« Random Choice
» Timed Event Generator
o Action (in the Reliability Module)
» Function (in the Reliability Module)

Note: Importance sampling is only applied to the first sampled random value in each realization for elements
with importance sampling enabled. Subsequent samples will use random sampling.

Note: In addition to the importance sampling method described here (in which you can choose to force
importance sampling on either the low end or high end of a Stochastic element’s range), GoldSim also
provides an advanced feature that supports custom importance sampling that can be applied over user-defined
regions of the Stochastic element’s range.

Customized Importance Sampling Using User-Defined Realization Weights on page 1075

Warning: Importance sampling affects the basic Monte Carlo mechanism, and it should be used with great
care and only by expert users. In general, it is recommended that only one or at most a very few parameters
should use importance sampling, and these should be selected based on sensitivity analyses using normal
Monte Carlo sampling. Importance sampling should only be used for elements whose distribution tails will not

be adequately sampled by the selected number of realizations.

How Importance Sampling Works

Importance sampling is a general approach to selectively enhance sampling of important outcomes for a model. In
principle, the approach is simple:

1. Identify an important subset of the sampling space;
2. Sample that subset at an enhanced rate; and

3. When analyzing results, assign each sample a weight inversely proportional to its enhancement-factor.

realization is assumed equally probable. It is straightforward, however, to incorporate a weight associated with each
sample in order to represent the relative probability of the sample compared to the others.

The conventional Monte Carlo approach is as shown below. A uniform 0 — 1 random variable u is sampled, and its
value is then used as input to the inverse cumulative distribution function of the random variable:

- 1141 -

Sampling Techniques

X A

Random Function f(x)

B
S

0-1 Random Variate u

In order to do importance sampling, the original uniformly-distributed random numbers are first mapped onto a
non-uniform ‘biased’ sampling function s:

S A

s(u) =

Sample weight
= ds/du

Biased Variate

-
u

0-1 Random Variate u

The biased variate s is then used to generate the random function. Since the input random numbers are no longer
uniformly distributed, the resulting sample set is selectively enriched in high-consequence results:

- 1142 -

Sampling Techniques

= x4
£ F'(s)
0
[
S
g -
=
LL
©
()]
w
©
m
S
Biased Variate s

In general, any continuous monotonic biasing function s which spans the range 0-1, and has s(0) = 0 and s(1) = 1
can be used to generate the set of input random numbers. The weight associated with each sampled realization is
ds/du, the slope of the biasing function s at the sampled point.

Biasing (Enhancement) Functions

GoldSim uses simple functions to selectively enhance either the upper or the lower end of an element’s probability
distribution.

u u?

v (0) =0~ T T T

where a is a function of the number of elements that are using importance sampling. This is equal to zero if only
one element uses importance sampling, and is equal to ten times the number of importance sampled elements in all
other cases. The effect of increasing a is to restrict the importance sampling to a smaller subset of the full range of
the random value, which reduces the negative impacts of importance sampling numerous variables in the same
model.

The sample weight is given by:

ds 1 2u
=1- +
(1+au)?2 1l+a

Wiower = E =

Note: This is the relative weight (not the actual weight). In a Monte Carlo simulation without biasing, the
relative weight of each sample is 1. The actual weight is the relative weight/the number of realizations.

Note: For the first 10,000 realizations where GoldSim uses the expected values of the LHS strata the weight
given to each sample is equal to the integral of s over the stratum divided by the corresponding integral of u
over the strata. For the 10,001st and subsequent realizations GoldSim will calculate s and w for the sampled
point.

The biasing function for enhancing the upper end is:

- 1143 -

Sampling Techniques

(1—u) (1—v
1+a(l—u) 1+a

Supper = 1 — Slower(1 —0) =1— |(1 —u) —

and the corresponding sample weight is given by:
1 2(1—u
20w
[1+a(1—u)] 1+a

Wupper = wlower(]- - u) =1-

The following plot shows the upper and lower biasing function when a single element utilizes importance sampling
(a=0):

a=20

- = -Lower End Enhancement - - Upper End Enhancement

1 ——
0.9 b h |
0.8 i o :
0.7 = /
0.6 ,
v 0.5 y ,
0.4 \;(/)
0.3 / ’
0.2 y r
0.1 ,)

0 £ aom =

0 0.2 0.4 0.6 0.8 1

The following figure shows the bias function when three elements are importance sampled (a = 30):

- 1144 -

Representing Random (Poisson) Events

a=30

- = -Lower End Enhancement - Upper End Enhancement
1
0.9 5
0.8
0.7 A
0.6 b= 4
”’ 7
1 05 P

0.4
0.3 e
0.2
0.1 S

0 &
0 0.2 0.4 0.6 0.8 1

Note the less prominent bias as the number of importance sampled elements increases.

Behavior of Elements with Importance Sampling Enabled

The Stochastic element provides the option to choose between upper and lower end enhancement when importance
sampling is enabled. However, the other elements that utilize importance sampling (the Timed Event element, the
Reliability elements and the Random Choice element) importance sample only one end of the distribution.

Timed Events will use lower end importance sampling on the time to event distribution specified by the user. The
Random Choice element has a slightly different behavior. When importance sampling is enabed, the Random
Choice element sorts the probability of each outcome from lowest probability to highest probability and assigns
them to sections of a uniform distribution. This uniform distribution is then importance sampled at the lower end,
so that the least probable outcomes are enhanced.

The Reliability elements will use a combination of these approaches. Time based failure modes behave in a similar
manner to the timed event elements. Modes with a “probability of failure” perform importance sampling to enhance
the number of failure outcomes.

It is important to note that only the first sampled value utilizes importance sampling. This means that only the first
event from a Timed Event, the first Random Choice and the first occurrence of each Failure Mode will use
importance sampling.

Representing Random (Poisson) Events

Timed Event elements can be specified to produce discrete event signals regularly or randomly.

Timed Event Elements on page 392

- 1145 -

Computing and Displaying Result Distributions

Random events are simulated as occurring according to a Poisson process with a specified rate of occurrence. If an
event occurs according to a Poisson process, the probability that N events will occur during a time interval T is
described by the following expression (Cox and Miller, 1965):

e AT (AT)N

P(N) = NI

where:

P(N) is the probability of N occurrences of the event within the time interval T;
T is the time interval of interest;

A is the annual rate of occurrence; and

N is the number of occurrences of the event within the time interval T.

The expected (mean) number of occurrences during the time interval is equal to AT.

The Poisson distribution also has the property that the intervals between events are exponentially distributed
(Benjamin and Cornell, 1970):

Ft)=1—e™
where F(t) is the probability that the time to the next event will be less than or equal to t.

If you indicate that the event can only occur once, GoldSim simulates the first occurrence according to the above
equations, but does not allow the event to occur again.

Note that the rate of occurrence can be specified to be a function of time (i.e., the event process can be non-
stationary).

Computing and Displaying Result Distributions
Displaying a CDF

Probabilistic results may be viewed in the form of a CDF (or a CCDF). This section describes how the values
realized during the simulations are used to generate the CDF (or CCDF) seen by the user.

Creating the Results

Within GoldSim Monte Carlo results are stored in a particular data structure, referred to here as the results array.
As the simulation progresses, each specific Monte Carlo realization result is added to the results array as a pair of
values; the value realized and the weight given by GoldSim to the value. The array is filled "on the fly", as each
new realization is generated. Theoretically, each separate realization would represent a separate entry in the results
array (consisting of a value and a weight). If unbiased sampling were carried out each separate entry would have
equal weight.

As implemented in GoldSim, however, the number of data pairs in the results array may be less than the number of
realizations: There are two reasons why this may be the case:

o If multiple results have identical values, there is no need to have identical data pairs in the results array: the
weight associated with the particular value is simply adjusted (e.g., if the value occurred twice, its weight
would be doubled).

- 1146 -

Computing and Displaying Result Distributions

o For computational reasons, the results array has a maximum number of unique results which it can store.
The maximum number for post-processing GoldSim simulation results is 25,000. If the number of
realizations exceeds these limits, results are "merged" in a self-consistent manner. The process of merging
results when the number of realizations exceeds 25,000 is discussed below.

To merge a new result with the existing results (in cases where the number of realizations exceeds one of the
maxima specified above), GoldSim carries out the following operations:

e GoldSim finds the surrounding pair of existing results, and selects one of them to merge with. GoldSim
selects this result based on the ratio of the distance to the result to the weight of the result (i.e., the program
preferentially merges with closer, lower weight results).

o After selecting the result to merge with, GoldSim replaces its value with the weighted average of its
existing value and the new value; it then replaces its weight with the sum of the existing and new weights.

There is one important exception to the merging algorithm discussed above: If the new result will be an extremum
(i.e., a highest or a lowest), GoldSim replaces the existing extremum with the new one, and then merges the
existing result instead. This means that GoldSim never merges data with an extremum.

Plotting a CDF

Plotting the CDF from the results array is straightforward. The basic algorithm assumes that the probability
distribution between each adjacent pair of result values is uniform, with a total probability equal to half the sum of
the weights of the values. One implication of this assumption is that for a continuous distribution the probability of
being less than the smallest value is simply equal to half the weight of the lowest value and the probability of being
greater than the highest value is half the weight of the highest value.

For example, if we have ten equally weighted results in a continuous distribution, there is a uniform probability,
equal to 0.1, of being between any two values. The probability of being below the lowest value or above the
highest value would be 0.05. GoldSim extrapolates the value at a probability level of 0 using the slope between the
first two observations. Similarly the slope between the last two observations is used to estimate the value at a
probability level of 1.

Note: Extrapolation is not carried out for Milestone result distributions, Reliability element failure and repair
time distributions, and for Sampled Stochastic distributions if the option to extrapolate is not checked.

In certain circumstances there are several minor variations to the basic algorithm discussed above:

o If a large number of results are identical, GoldSim assumes the entire distribution is discrete (rather than
continuous), and lumps the probabilities at the actual values sampled. In particular, if more than 50% of the
realization results were identical to an existing result (and there are less than 1000 results), GoldSim
presumes the distribution is discrete and plots it accordingly. The user can observe this by sampling from a
binomial distribution.

¢ GoldSim uses a heuristic algorithm to decide if each specific result represents a discrete value: if any result
is repeated, GoldSim treats the result as a discrete value and does not ‘smear’ it. For example, suppose the
result is 0.0 30% of the time, and normal (mean=10, s.d.=2) the rest of the time. The first result value would
be 0.0, with a weight of about 0.3. The second value would be close to 8, with a weight of 1/# realizations.
We would not want to smear half of the 0 result over the range from 0 to 8!

When the user selects the confidence bounds options (discussed below), a different algorithm is used to display and
plot CDF values. In particular, the displayed value is simply the calculated median (50th percentile) in the
probability distribution for the “true” value of the desired quantile.

- 1147 -

Computing and Displaying Result Distributions

Displaying a PDF

Displaying PDFs is much more difficult than CDFs, as unless a large number of realizations are run, PDFs tend to
be “noisy” even if the corresponding CDF appears smooth (small changes in the slope of the CDF are typically not
noticeable to the eye, but these can translate into very noticeable “spikes” in the PDF).

To display a PDF, GoldSim creates a series of equally-spaced bins, with a constant density value within each bin.
The density within each bin is the average slope of the CDF over the bin. The number of bins automatically
increases with the number of realizations. In particular, the number of bins is equal to the square root of the number
of results being considered. The maximum number of bins used is 1000 (and the minimum is 1).

Computing and Displaying Confidence Bounds on the Mean

GoldSim is able to perform a statistical analysis of Monte Carlo results to produce confidence bounds on the mean
of a probabilistic result. These bounds reflect uncertainty in the probability distribution due to the finite number of
Monte Carlo realizations - as the number of realizations is increased, the limits become narrower. The confidence
bounds on the mean are displayed in the Statistics section of the Distribution Summary dialog when viewing
Distribution Results if the Confidence Bounds checkbox is checked.

Viewing a Distribution Summary on page 670

This approach to compute the confidence bounds uses the t distribution, which is strictly valid only if the
underlying distribution is normal. The 5% and 95% confidence bounds on the population mean are calculated as
defined below:

5% Bound = i — to.05 S—x

/o

- s
95% Bound = X + tg,05 —
0 0.05 \/ﬁ

where:

X is the sample mean;

t 05 s the 5% value of the t distribution for n-1 degrees of freedom;
Sy is the sample standard deviation; and

n is the number of samples (realizations).

As the number of realizations, n, becomes large, the Central Limit theorem becomes effective, the t distribution
approaches the normal distribution, and the assumption of normality is no longer required. This may generally be
assumed to occur for n in the order of 30 to 100 realizations even for results of highly-skewed distributions.

Note: These confidence bound calculations are strictly only applicable for purely random sampling. When
using Latin Hypercube sampling, these bounds overestimate the uncertainty in the mean.

Computing and Displaying Confidence Bounds on CDFs and CCDFs

GoldSim is able to perform a statistical analysis of Monte Carlo results to produce confidence bounds on the
resulting probability distribution curves. These bounds reflect uncertainty in the probability distribution due to the
finite number of Monte Carlo realizations - as the number of realizations is increased, the limits become narrower.
The confidence bounds are displayed when viewing Distribution Results if the Show Confidence Bounds button in
the Distribution display window is pressed.

- 1148 -

Computing and Displaying Result Distributions

The confidence bounds appear as different-colored curves on the probability plots produced by the GoldSim user
interface. The bounds represent 5% and 95% confidence limits on the distribution value at each probability level.
Confidence bounds cannot be displayed for PDFs.

The theory used to produce the confidence bounds has several limitations:

o The bounds on distributions can only be calculated for cases where all realizations have equal weights. If
importance sampling is used for any parameter is used, GoldSim will not display confidence bounds.

o The confidence bounds cannot be calculated for values less than the smallest result, or greater than the
largest result. As a result of this, the confidence-bound curves do not generally reach all of the way to the
tails of the result plots.

In cases with relatively few stochastic parameters, Latin Hypercube sampling can increase the accuracy of the
probability distributions. The confidence bounds are not able to reflect this improvement, and as a result will be
conservatively wide in such cases.

Theory: Bounds on Cumulative Probability

Suppose we have calculated and sorted in ascending order n random results r; from a distribution. What can we say
about the qth quantile Xq (e.g., =0.9) of the underlying distribution?

Each random result had a probability of q that its value would be less than or equal to the actual q'h quantile Xg-
The total number of results less than x, was therefore random and binomially distributed, with the likelihood of
exactly i results <= x, being:

q
n\ . : n! . .
PO =P <x0 <nn) = (})0 - @ = - o

Note that there may be a finite probability that the value of x, is less than the first or greater than the largest result:
for example, if 100 realizations r; were sampled, there would be a probability of 0.366 that the 0.99 quantile
exceeded the largest result. The 100 realization probability distribution for x g9 is as follows:

Between Results Probability Cumulative Probability

<94 0.0000 0.0000
94 and 95 0.0005 0.0005
95 and 96 0.003 0.0035
96 and 97 0.015 0.0185
97 and 98 0.061 0.0795
98 and 99 0.1849 0.2644
99 and 100 0.370 0.6344
> 100 0.366 1

GoldSim assumes that the probability defined by the equation presented above is uniformly distributed over the
range from r; to r;4{, and interpolates into the Monte Carlo results-list to find the 5% and 95% cumulative
probability levels for x,.

Using the above probability distribution, it is also possible to calculate the expected value of Xg- This approach
appears (by experimentation) to provide a slightly more reliable estimate of Xq than the conventional Monte Carlo

- 1149 -

Computing Sensitivity Analysis Measures

approach of directly interpolating into the results-list. The expected value of x is calculated by summing the
product of the probability of x, lying between each pair of results and the average of the corresponding pair of
result-values:

A, (T)
Xq = ZP(I)JFT
i=1

When using this equation to estimate a very high or low quantile, a problem arises when the probability level, q, is
near to 0 or 1, as there can be a significant probability that Xq lies outside the range of results. In the table
presented above, for example, there is a 0.366 chance of q(99 exceeding the largest result. In such cases, an
estimate of the expected value of Xg can be found by extrapolating from the probabilities within the range of the
results. Obviously, however there are limits to extrapolation and without knowledge of the actual distributional
form no extrapolation would produce a reliable estimate of (say) the 0.9999 quantile if only 100 realizations had
been performed.

In evaluating the binomial distribution for large values of n, large numbers can be generated which can cause
numerical difficulties. To avoid these difficulties, when the number of realizations (n) is greater than 100, GoldSim
uses either the normal or Poisson approximations to the binomial distribution. The Poisson approximation is used
when i or (n-i) is less than 20 and the normal distribution is used otherwise. These approximations are described in
any introductory statistics text.

Computing the Conditional Tail Expectation

The Conditional Tail Expectation (CTE) is the expected value of the result given that it lies above a specified value
or quantile. The CTE is displayed in the ‘Calculator’ portions of the Stochastic and Result Distribution elements,
and is an optional output type for a Monte Carlo SubModel element.

Specifying the Distribution for a Stochastic Element on page 142; Viewing a Distribution Summary on
page 670; Creating the Output Interface to a SubModel on page 1047

For a tail starting at value k, the CTE is defined as:
1 o0
CTE, = ——— f(x)d
* 1—F(k)/k x f(x)dx

where:

FK) is the cumulative probability of value k; and
f(x) is the probability density at value x.

Computing Sensitivity Analysis Measures

GoldSim provides a number of statistical sensitivity analyses through the multi-variate result display option. If you
press the Sensitivity Analysis... button from the Multi-Variate Result dialog, a table such as this is displayed:

|| Multivariate 1

||_L2D Chart ff 3D Chart ;_'j Table E Correlations }Ta Sensitivity %E Use Ranks 1'¢ E-
¥: Sensitivity analysis (based on values). Coefficient of determination = 0.0765536

Bkl Importance Correlation Regression Partial
5 Measure Coefficient Coefficient Coefficient
1 [X1 0.011 0.024 0.022 0.023
2 [x2 0.840 -0.015 -0.005 -0.006
3 [X3 0.108: 0.276 0.275 0.275

- 1150 -

Computing Sensitivity Analysis Measures

This table displays measures of the sensitivity of the selected result (the output from which you selected Multi-
Variate Result...) to the selected input variables.

Note: You can control whether the sensitivity analyses are based on the values or the ranks of the variables
and the result via the Use Ranks button at the top of the display.

The measures that GoldSim computes are:
o Coefficient of determination;
¢ Correlation coefficients;
o Standardized regression coefficients (SRC);
o Partial correlation coefficients; and

o Importance measures.
The manner in which each of these measures is computed is described below.

Viewing a Sensitivity Analysis Table on page 747

Computing the Coefficient of Determination

The coefficient of determination represents the fraction of the total variance in the result that can be explained
based on a linear (regression) relationship to the input variables (i.e., Result = aX + bY + c¢Z + ...). The closer this
value is to 1, the better that the relationship between the result and the variables can be explained with a linear
model.

The formulation for the coefficient of determination (R2) can be found in Iman (1985). Note that if all of the
variables on uncorrelated, then:

RP =G

where Ci is the correlation coefficient for variable i.

Computing Correlation Coefficients

Rank (Spearman) or value (Pearson) correlation coefficients range between -1 and +1, and express the extent to
which there is a linear relationship between the selected result and an input variable.

The value correlation coefficient is computed as follows:

n

> (Pt —mp)(r; —my)

i-1

(s —mp)? 3 (5 — my)?
i=1 1

i=

Cep =

where:

- 1151 -

Computing Sensitivity Analysis Measures

Cyp is the value correlation coefficient between r and p;
n is the number of selected data points (realizations);
p; is the value of output p for realization i;

r; is the value of output r for realization i;

m,, is the mean value of output p; and

m, is the mean value of output r.

Note that the value correlation coefficient as defined here provides a measure of the linear relationship between two
variables.

Furthermore, it may be affected by a few aberrant pairs (i.e., a good alignment of a few extreme pairs can
dramatically improve an otherwise poor correlation coefficient; likewise, an otherwise good correlation could be
ruined by the poor alignment of a few extreme pairs).

To overcome these problems, the value correlation coefficient can be supplemented by the rank correlation
coefficient.

The rank correlation coefficient (also referred to as the Spearman rank correlation coefficient) is computed using
the same equation as that of the value correlation coefficient with the ranks of the data values being used rather
than the actual values:

_EI(RPi — mgy) (Rr; — mg,)

Crp,rank =

> (Rpi —mgp)? Y (Rr; — mg;)?
i=1 i=1

where:

Crp,rank is the rank correlation coefficient between r and p;
n is the number of selected data points (realizations);

Rp; is the rank (from 1 to n) of output p for realization i;
Rr; is the rank (from 1 to n) of output r for realization i;
m,, is the mean value of the rank of output p; and

m, is the mean value of the rank of output r.

In GoldSim, the ranks of equal values are the same. For example, if the lowest two realizations of an output were
the same, their ranks would both be 1.5 (the mean of 1 and 2), with the third lowest value being assigned a rank of
3.

Note: A correlation coefficient cannot be computed for a pair of outputs if one of the outputs has a standard
deviation of zero (i.e., is constant). In this case, GoldSim sets the correlation coefficient to zero.

Computing Standardized Regression Coefficients (SRC)

Standardized regression coefficients range between -1 and +1 and provide a normalized measure of the linear
relationship between variables and the result. They are the regression coefficients found when all of the variables
(and the result) are transformed and expressed in terms of the number of standard deviations away from their mean.
GoldSim’s formulation is based on Iman et al (1985).

The use of standardized regression coefficients to identify the importance of correlated input variables is described
in Iman et al (1985). In this approach the correlation matrix C for the input variables is augmented, with an
additional row/column assigned for the result (GoldSim uses the first row/column for this purpose).

- 1152 -

Computing Sensitivity Analysis Measures

The standardized regression coefficients are based on the inverse of the augmented correlation matrix, and are
found by dividing the terms in the augmented column of the matrix by the negative of the augmented diagonal
term:

_c.
SRGy, = — 4

where:

SRCy ; is the standardized regression coefficient of the result (y) with respect to input variable X;;
Cjy is the off-diagonal term in the inverted correlation matrix for row i, column y; and
Cyy is the diagonal term in the inverted correlation matrix corresponding to the result y.

Computing Partial Correlation Coefficients

Partial correlation coefficients reflect the extent to which there is a linear relationship between the selected result
and an input variable, after removing the effects of any linear relationships between the other input variables and
both the result and the input variable in question. For systems where some of the input variables may be correlated,
the partial correlation coefficients represent the “unique” contribution of each input to the result. GoldSim’s
formulation is based on Iman et al (1985).

The partial correlation coefficient Py ; is calculated as:

PYyi =
Ci Cyy

where:

Py ; is the partial correlation coefficient of the result (y) to input variable X;;

cl-'V the off-diagonal term in the inverted correlation matrix for row i, column y; and

¢;; and cyy are the diagonal terms in the inverted correlation matrix corresponding to the input variable
and the result, respectively.

Note that if any two or more of the input variables are linearly dependent, for example if they are perfectly
correlated, then the correlation matrix becomes singular and cannot be inverted. GoldSim, which uses Choleski
decomposition to compute the inverse, will automatically adjust the correlation matrix if necessary in order to
compute the partial correlation coefficients. This adjustment, which takes the form of ‘weakening’ of the off-
diagonal terms, does not affect the displayed correlation coefficients.

Computing Importance Measures

If there is a nonlinear, non-monotonic relationship between an input variable and the result, conventional
correlation coefficients may not reveal the relationship. The Importance Measure computed by GoldSim is a
normalized version of the measure E[V(Y|Xi)] discussed in Saltelli and Tarantola (2002). The Saltelli and
Tarantola measure represents the expected value of the variance if the input variable Xi was not uncertain. Thus,
the smaller this value, the more the input variable controls the result.

The GoldSim version of this measure is normalized as follows:

E [V, (Y[X)]

M)'ai =1- ‘,y

where:

- 1153 -

Computing Sensitivity Analysis Measures

My ; is the GoldSim importance measure for the sensitivity of the result (y) to input variable X;;
V, is the current variance in the result y; and
E[Vy(Y|Xi)] is the expected value of Vy if the input variable X; was perfectly known.

Thus, GoldSim’s Importance Measure My ; represents the fraction of the result variance that is explained by X;.
Note that, like the correlation coefficients and scatter-plots, the importance measure can be calculated using either
values or ranks, as specified in the main property window for the multivariate element.

GoldSim calculates My ; numerically, using the following method: Construct a 2-d scatter plot of the results, with
the X; values on the horizontal axis and the result on the vertical axis. If X; is very important to the result, then this
plot will show a clustering around a central line or curve, such as in this example (in which X, is important):

Subdivide the plot into N vertical segments based on the ranks of the X;-values, where N equals the square root
of the number of model realizations. For each of the segments, estimate the variance of Y within that segment by
using a weighting function that assigns decreasing weights to the results as their distance from the center of the
segment increases. Then compute the average value of the variance over all of the segments, i.e. E[Vy (Y|X;)]. For
the weighting function, GoldSim uses the density of a beta distribution having a mean equal to the X-value at the
center of the segment, a standard deviation equal to the segment width, and upper and lower bounds corresponding
to the range of X-values.

The example plot above is based on calculating:

Y=X;+X}+X3}

where:

X is a random variable with a U(1,2) distribution;
X, is a random variable with a U(-10,10) distribution; and
X3 is a random variable with a U(-3,3) distribution.

The plot shown above, plotting Y vs X, clearly reveals the importance of X, in this model. Conventional
correlation analysis is completely unable to recognize this sensitivity, as indicated by the correlation coefficient of
effectively zero (0.001) in the screen-shot below. However, the importance measure for X, is very high (0.845).
That is, X, is identified as the most important variable:

- 1154 -

Appendix B References

[{h2D Chart .| 30 Chart [Table [Correlations [Sensitivity :=UseRanks T [9

i Sensitivity analysis (based on values), Coefficient of determination = 0.0927212

Result Importance Correlation Regression Partial

= Measure Coefficient Coefficient Coefficient

1 X1 0.019 0.027 0.044 0.046
2 [X2 0.845 0.001 -0.009 -0.00%
3 [X3 0.119 0.301 0.304 0.303

Appendix B References

The references cited in this appendix are listed below.

Cox, D.R. and H.D. Miller, 1965. The Theory of Stochastic Processes, Chapman and Hall, New York.

Benjamin, J.R. and C.A. Cornell, 1970. Probability, Statistics, and Decision for Civil Engineers,
McGraw-Hill, New York.

Embrechts, Paul., Lindskog, Filip and Alexander McNeil, 2001, "Modelling Dependence with Copulas
and Applications to Risk Management," Department of Mathematics, Swiss Federal Institute of
Technology, Zurich (http://www.defaultrisk.com/pp corr 19.htm).

Iman, R.L. 1982. Statistical Methods for Including Uncertainties Associated with the Geologic Isolation
of Radioactive Waste Which Allow for a Comparison with Licensing Criteria. Proceedings of the
Symposium on Uncertainties Associated with the Regulation of the Geologic Disposal of High-Level
Radioactive Waste, Gatlinburg, Tennessee, March 9-13, 1981. Kocher, D.C., ed. NUREG/CP-0022. 145-
157. Washington, D.C.: U.S. Nuclear Regulatory Commission. TIC: 213069.

Iman, R.L. and W.J. Conover, 1982. A Distribution-Free Approach to Inducing Rank Correlation Among
Input Variables, Communications in Statistics: Simulation and Computation, 11(3), pp 311-334,

Iman, R.L. et al., 1985. A FORTRAN Program and User’s Guide for the Calculation of Partial
Correlation and Standardized Regression Coefficients, NUREG/CR-4122, SAND85-0044.

L’Ecuyer, P., 1988, Communications of the ACM, vol. 31, pp. 742-744.

McKay, M.D., Conover, W. J., and Beckman, R. J., 1979. A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, 21, 239-245.

Saltelli, A. and S. Tarantola, 2002. On the Relative Importance of Input Factors in Mathematical Models:
Safety Assessment for Nuclear Waste Disposal, J. Am. Stat. Ass., Vol. 97, No. 459.

- 1155 -

Appendix C: Implementing
External (DLL) Elements

Begin at the beginning and go on till you come to the end; then stop.

Lewis Carroll, Alice in Wonderland

Appendix Overview

GoldSim allows you to develop separate program modules (written in C, C++, Pascal, FORTRAN or other
compatible programming languages) which can then be directly coupled with the main GoldSim algorithms. These
user-defined modules are referred to as external functions, and are linked into GoldSim as DLLs (Dynamic Link
Libraries) at run time. GoldSim interfaces with the DLL via an External element.

External (DLL) Elements on page 995

Integrating your external program module into GoldSim requires that you develop a "wrapper" or "shell" around
the function and compile it into a DLL. This appendix discusses the details of how external functions must be
coded and compiled.

In this Appendix

This appendix discusses the following:
o Understanding External (DLL) Elements
o Implementing an External Function
o External Function Examples
« External Function Calling Sequence

o DLL Calling Details

- 1157 -

Understanding External (DLL) Elements

Understanding External (DLL) Elements

with External elements to do calculations or other manipulations that are not included in the standard capabilities of
GoldSim. The external function facility allows special purpose calculations or manipulations to be accomplished
with more flexibility, speed or complexity than with the standard GoldSim element types.

The external functions are bound to the GoldSim executable code at run time using DLL technology. The DLL
files should be present in the same folder as the GoldSim .gsm file, in the same folder as the GoldSim executable
file, or elsewhere in the user’s path.

Note that these functions are external to GoldSim and are not covered by the standard GoldSim verification
process. The user is responsible for any necessary testing of external functions.

Every external function is called by GoldSim with specific requests. The requests include initialization, returning
the function version number, performing a normal calculation, and "cleaning up" after a simulation. The function
name and argument list (the set of input and output data for the function) are specified by the GoldSim user when
setting up the External element.

External functions should provide their own error handling, message handling, file management and memory
management if required. It is essential that when it receives a “clean up” request, an external function should
release any dynamically acquired memory and close any open files.

Note: In the case of an error condition, the external function should always return an error code to GoldSim, so
that the user can be informed about the problem and the simulation can be terminated cleanly with no memory
leaks.

Implementing an External Function

Important Restrictions

The implementation of the external function is left to the programmer, but several restrictions apply so that the
functions can be correctly called by GoldSim. They are:

o The function return value is ignored. For example, use void functions in C/C++, or subroutines in
FORTRAN.

o Data are passed from GoldSim to the external function and back again to GoldSim via arrays of double
precision floating point input and output arguments.

« Input arguments must not be modified by the external function. Doing so may cause memory corruption in
the DLL and/or GoldSim.

o Each function must manage its own initialization and memory allocation, and its own messages to the user
(if any).

« Unique external function (or subroutine) names must be defined in each DLL. In C++, function names are
case-sensitive, while in FORTRAN, the case of the external subroutine name is determined from the DLL
build options. In all instances, the function name specified in GoldSim is case-sensitive, and must agree
with the case specified in the DLL.

- 1158 -

Implementing an External Function

« All files required to run your specific DLL must be properly installed on the machine where GoldSim is
running. This includes any additional runtime libraries required by your DLL.

* Most development environments allow both static and dynamic binding of runtime libraries to DLLs. DLLs
built with static binding are stand-alone, with all run-time library references included in the DLL file.
However, if a DLL is built with dynamic binding, the runtime libraries are not included. For a DLL with
dynamic binding, the runtime libraries (e. g. msvcrt.dll for Visual C++ or libifcoremd.dll for Intel Visual
Fortran) must be present and in the environment PATH variable on the machine where GoldSim is running.

External Function Format
When calling methods from the DLL, GoldSim always expects the following C/C++ function signature:

extern "C" void _ declspec(dllexport)
MyExternalFcn (int XFMethod,

int* XFState,

double* inargs,

double* outargs)

The extern "C" specifies C language style linkage between GoldSim and the DLL, and __declspec(dllexport) makes
the function visible outside the DLL.

For Intel Visual Fortran, the following subroutine signature can be used:

subroutine my external fcn(xfmethod, xfstate, inargs, outargs)

!DECS$ ATTRIBUTES dllexport,c :: add mult scalars
!DEC$ ATTRIBUTES value :: nmethod
!DEC$ ATTRIBUTES reference :: nstatus
IDEC$ ATTRIBUTES reference :: dinputs
!DEC$ ATTRIBUTES reference :: doutputs

Other FORTRAN development environments may require different attributes for the proper linkage to GoldSim.

Note: Arrays in C/C++ start at zero, rather than one (the default for FORTRAN). Array indices in this section
use the C/C++ convention.

The arguments are:

Argument Definition

int Action that the external function must perform (see table below)
XFmethod;

int* XFState; Returned value success 0 or fatal 1

double* Array of input arguments

inargs;

double* This array returns different information when different XFmethod values are passed to the
outargs; external function

The values for XFmethod are:

- 1159 -

Implementing an External Function

0 XF_INITIALIZE Initialize (called at the beginning of each realization). No arguments are
passed on this call.

1 XF Normal calculation. Total number of output arguments are returned on this
CALCULATION call. outargs[0] = 1st result from the function; outargs[1] = 2nd result from
the function; etc.

2 XF _REP_ External functions report their versions. No input arguments are passed on
VERSION this call. outargs[0] = external function version, e.g., 1.10

3 XF REP_ External functions report the # of input and output arguments. No input
ARGUMENTS arguments are passed on this call. outargs[0] = # of input arguments. outargs

[1] = # of output arguments.

99 XF_CLEANUP Close any open files, and optionally release dynamic memory at the end of a
simulation. No arguments are passed on this call.

The returned values for XFState are:

0 OK, continue GoldSim
> (0 and < 99 terminate GoldSim
99 OK, unload the DLL

The following two return codes may only be used for an XF_CALCULATION call:

-1 Fatal error, error message pointer returned

-2 More result memory required; the total amount (in doubles) required is returned in outargs[0]. This
may be required of the external function is returning a table or time series definition. (Note that the
additional memory is retained until the end of the simulation.)

The memory for the inargs and outargs arrays is allocated by GoldSim at the start of the simulation, based upon the
inputs and outputs specified in the Interface tab of the External element properties dialog. The number of input and
output arguments is verified during the XF_ REP_ ARGUMENTS request. GoldSim counts up the number of input
and output arguments it expects, and compares it to the numbers for each reported by the DLL.

Warning: It is the responsibility of the external function to ensure that it does not write to any output
arguments beyond the number reported for XF REP. ARGUMENTS. Doing so may cause memory corruption
in GoldSim.

Argument Checking

GoldSim calculates the total number of input and output arguments by summing over the the inputs and outputs
specified on the Interface tab of the External element properties dialog. Note that each scalar input or output counts
as one argument, while array inputs or outputs count as the size of the array (rows * columns). The calculated totals
are then compared to the external function’s reported number of input and output arguments. If the number of
arguments defined by GoldSim does not agree with the number reported by the external function, GoldSim
terminates with an error message.

- 1160 -

Implementing an External Function

However, note the following exceptions:

If outargs[0] is returned as -1, the number of input arguments is not tested. This allows for functions where
the DLL does not know in advance the number of input argument that it will receive.

If the external function will be returning definitions for one or more Tables or Time Series (see below),
GoldSim will not know in advance how long the Table definitions will be. In this case, the external function
should specify a value for outargs[1] greater than or equal to the actual total number of arguments that may
be returned. GoldSim will allocate this amount of memory for outargs. Note that this can be reset during the
simulation by returning XFState=-2.

The Input and Output Argument Arrays

The content of input and output argument arrays is determined from the Interface tab of the External element
properties dialog.

The following points should be noted:

Input or outputs are processed in the order specified in the interface. All data from one input or output is
contiguous, followed by the data from the next input or output.

Scalar inputs and outputs are mapped to a single array argument.

Vector input and output items are specified in order, one argument per item, according to the order specified
in the array label.

Matrix input and output items are specified item-by-item, with all items in one row together, followed by all
items in the next row, and so on.

Lookup Table definitions can be specified in the output interface, via a special format.

Time Series definitions can be specified as inputs or outputs, also via a special format.

Lookup Table Definitions

External functions can also return Table definition elements to GoldSim. A table definition requires a specific
sequence of values, depending whether it is a 1-D, 2-D, or 3-D table.

The sequence for a 1-D table is as follows:

number of dimensions (in this case, 1)
the number of rows
row valuel, row value 2, ..., row value n

dependent value 1, dependent value 2, ..., dependent value n

The sequence for a 2-D table is as follows:

number of dimensions (in this case, 2)

the number of rows, the number of columns

row valuel, row value 2, ..., row value n

column value 1, column value 2, ..., column value n
dependent(row 1, column 1), ..., dependent(row 1,column n)

dependent(row 2, column 1), ..., dependent(row 2,column n)

- 1161 -

Implementing an External Function

dependent(row n, column 1), ..., dependent(row n, column n)

Warning: This is different than the sequence used to read in an ASCII text file for a 2-D table.

The sequence for a 3-D table is as follows:

number of dimensions (must be 3)

the number of rows, the number of columns, the number of layers

row valuel, row value 2, ..., row value y

column value 1, column value 2, ..., column value x

layer valuel, layer value 2, ..., layer value z

dependent(row 1, column 1, layer 1), ..., dependent(row 1,column x, layer 1)

dependent(row 2, column 1, layer 1), ..., dependent(row 2,column x, layer 1)

dependent(row y, column 1, layer 1), ..., dependent(row y, column x, layer 1)

dependent(row 1, column 1, layer z), ..., dependent(row 1,column x, layer z)

dependent(row 2, column 1, layer z), ..., dependent(row 2,column x, layer z)

dependent(row y, column 1, layer 1), ..., dependent(row y, column x, layer z)

Warning: This is different than the sequence used to read in an ASCII text file for a 3-D table.

Time Series Definitions

External functions can also read and return Time Series Definition. A Time Series Definition consists of the
following specific sequence of values.

1.
2.

The number 20 (this informs GoldSim that this is a Time Series)

The number -3 (this is a format number that infoms GoldSim what version of the time series format is
expected)

Calendar-baed index: 0 if elapsed time; 1 if dates

An index (0,1,2,3) indicating what the data represents (O=instantaneous value, 1=constant value over the
next time interval, 2=change over the next time interval, 3=discrete change)

The number of rows (0 for scalar time series)
The number of columns (0 for scalar and vector time series)

Number of series

- 1162 -

External Function Examples

8. For each series, the following is repeated:
o The total number of time points in the series
e Time point 1, Time point 2, ..., Time point n

The structure of the remainder of the file depends on whether the Time Series Definition represents a scalar,
a vector, or a matrix.

For a scalar, the next sequence of values is as follows:

e Value 1[time point 1], Value 2[time point 2], ..., Value[time point n]

For a vector, the next sequence of values is as follows:

o Value[rowl, time point 1], Value[rowl, time point 2], ..., Value[row], time point n]
e Value[row2, time point 1], Value[row2, time point 2], ..., Value[row2, time point n]
e Value[rowr, time point 1], Value[rowr, time point 2], ..., Value[rowr, time point n]

For a matrix, the next sequence of values is as follows:

e Value[rowl, columnl, time point 1], Value[rowl, columnl, time point 2], ..., Value[row1, column],
time point n]

e Value[row1, column2, time point 1], Value[row1, column?2, time point 2], ..., Value[row1, column2,
time point n]

e Value[rowl, columnc, time point 1], Value[row1, columnc, time point 2], ..., Value[row1, columnc,
time point n]

e Value[rowr, columnl, time point 1], Value[rowr, columnl, time point 2], ..., Value[rowr, columnl,
time point n]

e Value[rowr, column2, time point 1], Value[rowr, column2, time point 2], ..., Value[rowr, column2,
time point n]

o Value[rowr, columnc, time point 1], Value[rowr, columnc, time point 2], ..., Value[rowr, columnc,
time point n]

External Function Examples

The following is a simple example implementation of DLL code that will work with an External element. This
code takes two scalar elements as input, and returns the sum and product to GoldSim. For simplicity, this code is
written in C, implemented with Visual C++. This external function can be used with the External.gsm example
which can be found in the External subfolder of the General Examples folder in your GoldSim directory (accessed
by selecting File | Open Example... from the main menu).

- 1163 -

External Function Examples

// Global enumerations, useful for C-style implementations

//

// XFMethodID identifies the method types, used to identify
// the phase of the simulation that is currently in progress.

//

// XF_INITIALIZE - Called after DLL is loaded and before each realization.

// XF CALCULATE - Called during the simulation, each time the inputs change.

// XF_REP_VERSION - Called after DLL load to report the external fcn version number.
// XF_REP_ARGUMENTS - Called after DLL load to report the number of input

// and output arguments.

// XF_CLEANUP - Called before the DLL is unloaded.

//

enum XFMethodID

{

XF _INITIALIZE = 0, XF_CALCULATE = 1, XF_REP_VERSION = 2, XF_REP_ARGUMENTS = 3,
XF_CLEANUP = 99

)i

// XFStatusID identifies the return codes for external functions.

//

// XF_SUCCESS - Call completed successfully.

// XF_CLEANUP_NOW - Call was successful, but GoldSim should clean up

// and unload the DLL immediately.

// XF_FAILURE - Failure (no error information returned).

// XF_FAILURE WITH MSG - Failure, with DLL-supplied error message available.

// Address of error message is returned in the first element
// of the output arguments array.

// XF INCREASE MEMORY - Failed because the memory allocated for output arguments
// is too small. GoldSim will increase the size of the

// output argument array and try again.

//

enum XFStatusID

{

XF _SUCCESS = 0, XF_FAILURE
XF_INCREASE MEMORY = =2
}i

II171177707 77777777 77
// AddMultScalarsInC

1, XF _CLEANUP NOW = 99, XF FAILURE WITH MSG = -1,

// Adds and multiplies two input scalar values (C Language implementation).
e
extern "C" void _ declspec(dllexport) AddMultScalarsInC(int methodID,

int* status,

double* inargs,
double* outargs)

{

*status = XF_SUCCESS;
switch (methodID)

{

case XF INITIALIZE:

break; // nothing required

case XF REP VERSION:

outargs[0] = 1.03;

break;

case XF REP ARGUMENTS:

outargs([0] = 2.0; // 2 scalar inputs expected
outargs[l] = 2.0; // 2 scalar outputs returned
break;

case XF CALCULATE:

outargs[0] = inargs[0] + inargs[l]; // return the sum
outargs[1l] = inargs[0]*inargs[1l]; // return the product
break;

- 1164 -

External Function Examples

case XF _CLEANUP:

break; // No clean-up required
default:

*status = XF_FAILURE;

break;

}

}

The following code is the same algorithm, implemented in Intel Visual Fortran.

! Utility module to specify the GoldSim parameter constants

module gs parameters

implicit none
| Parameters to identify the method types, which indicate the phase of the
! simulation that is currently in progress.

! INITIALIZE - Called after DLL is loaded and before each realization.

! CALCULATE - Called during the simulation, each time the inputs change.

! REPORT_VERSION - Called after DLL load to report the external fcn version number.
! REPORT ARGUMENTS - Called after DLL load to report the number of input and output
! arguments.

! CLEANUP - Called before the DLL is unloaded.

integer(4), parameter :: INITIALIZE 0

integer(4), parameter :: CALCULATE 1

integer(4), parameter :: REPORT VERSION = 2

integer (4), parameter :: REPORT_ARGUMENTS = 3

integer (4), parameter :: CLEANUP = 99

| Parameters to identify the return codes for external functions.

! SUCCESS - Call completed successfully.

! CLEANUP_ NOW - Call was successful, but GoldSim should clean up
! and unload the DLL immediately.

! FAILURE - Failure (no error information returned).

! FAILURE WITH MSG - Failure, with DLL-supplied error message available.

! Address of error message is returned in the first element
! of the output arguments array.

! INCREASE MEMORY - Failed because the memory allocated for output arguments

! is too small. GoldSim will increase the size of the output
! argument array and try again.

integer(4), parameter :: SUCCESS = 0
integer(4), parameter :: FAILURE = 1
integer (4), parameter :: CLEANUP_NOW = 99
integer(4), parameter :: FAILURE WITH MSG = -1
integer(4), parameter :: INCREASE MEMORY = -2

end module gs_parameters
| 1 T Y I I A O A

! add mult scalars
! Adds and multiplies two input scalar values.

subroutine add mult scalars(method id, status, inargs, outargs)

!DEC$ ATTRIBUTES dllexport,c :: add mult_scalars
!DECS ATTRIBUTES value :: method id

IDEC$ ATTRIBUTES reference :: status

!DEC$ ATTRIBUTES reference :: inargs

!DEC$ ATTRIBUTES reference :: outargs

use gs_parameters
implicit none

real (8), parameter :: VERSION = 1.03

integer (4), parameter :: NINPUTS = 2 ! Two scalar inputs expected
integer(4), parameter :: NOUTPUTS = 2 ! Two scalar outputs returned
integer (4) method id, status

real (8) inargs (*), outargs(*)

select case (method id)

- 1165 -

External Function Calling Sequence

case (INITIALIZE)

status = SUCCESS

case (REPORT_VERSION)

outargs (1) = VERSION

status = SUCCESS

case (REPORT_ARGUMENTS)

outargs (1) = NINPUTS

outargs (2) = NOUTPUTS

status = SUCCESS

case (CALCULATE)

outargs (l) = inargs(l) + inargs(2) ! return the sum
outargs (2) = inargs(l)*inargs(2) ! return the product
status = SUCCESS

case (CLEANUP)

status = SUCCESS

case default

status = FAILURE

end select

end subroutine add mult scalars

Additional DLL code examples can be found (including examples for arrays, Lookup Tables, and Time Series
Elements) can be found in the GoldSim install directory. In addition to the source files, example solution and
project files for Microsoft Visual C++ and Intel Visual Fortran are also included (under General
Examples/External).

External Function Calling Sequence

GoldSim makes calls to the DLL external function at different times during the course of a GoldSim simulation:
« Before the simulation starts (while checking model integrity).
o The first time that the External element values are calculated.
o Every time that the input values of the External element change.
o Before each (subsequent) realization.
« After each realization (Cleanup After Realization option only).
o After the simulation finishes.

o Ifany DLL external function call returns a value of 99.

GoldSim users can control when the DLL is unloaded via the Unload After Each Use and Cleanup After
Realization options. These options are selected via checkboxes in the External element properties dialog ("Unload
DLL after each use" and "Run Cleanup after each realization"). As the name implies, Unload After Each Use will
clean up (XFMethod = XF CLEANUP) and unload the DLL after each calculation call (XFMethod =
XFCalculate). Similarly, Cleanup After Realization will clean up and unload the DLL at the end of each realization
(if the DLL is loaded).

The DLL external function code can also control when the DLL is unloaded. If any call to a DLL external function
returns a status of 99, GoldSim will treat the call as a success, but will clean up and unload the DLL immediately
after processing the returned data.

Before the Simulation

GoldSim calls the DLL external function before the simulation starts, as part of the process to check the validity of
the model. The main reason is to get the number of input and output arguments, to insure that they are consistent
with what is specified in the Interface tab. The call sequence is as follows:

- 1166 -

DLL Calling Details

1. Load the DLL and check for the existence of the external function
2. Ask for the version number (XFMethod = XF_REP_VERSION).

3. Ask for the number of input and output arguments (XFMethod = XF_REP_ARGUMENTS), and compare
to the values determined from the External element interface.

4. Clean up (XFMethod = XF_CLEANUP) and unload the DLL.

If any of these calls fail, or if the number of input or output arguments in step 3 are inconsistent, GoldSim will
display an error message and return to the previous state (Edit or Ready mode).

During Each Realization

During each realization, GoldSim will call the DLL external function when the corresponding External element
needs to be updated. This happens the first time that the Element is referenced, and every subsequent time-step or
event update where an input to the Element changes. In this case, the following call sequence is used:

1. Check to see if the DLL is loaded. If so, skip to step 6.
. Load the DLL and check for the existence of the external function

. Ask for the version number (XFMethod = XF_REP_VERSION), and write it to the log file.

. Initialize the DLL (XFMethod = XF INITIALIZE).
. Calculate (XFMethod = XF_ CALCULATE)

2

3

4. Ask for the number of input and output arguments (XFMethod = XF_REP_ARGUMENTS).

5

6

7. If Unload After Each Use is specified, clean up (XFMethod = XF_CALCULATE) and unload the DLL.

Before Each Realization

Before each realization, GoldSim will check to see if the DLL is loaded for each External element. If the DLL is
loaded, GoldSim will reinitialize the DLL (XFMethod = XF_INITIALIZE).

After Each Realization

If the Cleanup After Realization option is specified, and the DLL is loaded, GoldSim will clean up (XFMethod =
XF_CLEANUP) and unload the DLL after each realization.

After the Simulation

After the simulation completes (either successfully or after a fatal error), GoldSim will clean up (XFMethod = XF _
CLEANUP) and unload the DLL if it is still loaded.

DLL Calling Details

GoldSim can call DLL external functions by two different mechanisms, depending upon the Separate Process
Space option. For each External element, the GoldSim user can select this option in the properties dialog, via the
"Run in separate process space" checkbox. If this option is not selected, the DLL will be loaded with the Win32
LoadLibrary function. As a result, this DLL will share the same memory address space as the GoldSim process,
and any memory used in the DLL will be charged to the GoldSim process. By default, External elements are
created without the Separate Process Space option enabled.

If the Separate Process Space option is selected, GoldSim will call the DLL using a Component Object Model
(COM) interface. The interface is implemented as a COM LocalServer executable, which is started when GoldSim
first requests to load the DLL. Once the LocalServer is started, it loads the DLL into its own memory address space

- 1167 -

DLL Calling Details

(separate from GoldSim), and acts a proxy between GoldSim and the DLL for all external function requests. After
the DLL is unloaded, GoldSim frees the COM interface and the LocalServer executable terminates. Because this
option loads the DLL into a separate memory space, it may be a better option for DLLs with a large memory
footprint.

64-Bit DLL Support

GoldSim also supports loading of external DLLs that are built as 64-bit libraries. The main advantage for a 64-bit
DLL is a significant increase in the amount of virtual memory available (from 4GB to 8TB). Migrating DLL code
from 32-bit to 64-bit requires minimal (if any) changes; just install the 64-bit compilers for Visual C++ or Visual
Fortran and build with a 64-bit target. No change is GoldSim model configuration is required to use 64-bit DLLs,
since GoldSim will automatically determine the type of DLL and call the appropriate interface. However, the
following caveats do apply when using 64-bit DLLs in GoldSim:

e 64-bit DLLs can only be run on a computer with a 64-bit Windows operating system. If a DLL needs to run
on both 32-bit and 64-bit Windows, it should be a 32-bit DLL (which will run on both 64-bit and 32-bit
0S).

e 64-bit DLLs must run in a separate process space.

o For Distributed Processing runs, models that contain 64-bit DLLs can only be launched from a 64-bit
Windows operating system. GoldSim will inspect the model to see if it contains a 64-bit DLL, and will
disconnect all slaves that are running a 32-bit Windows OS.

Returning Error Messages from External Functions

To help GoldSim users debug problems with DLL external functions, GoldSim lets users send an error message
from the DLL back to GoldSim through the External element interface when the call to an external function fails.
The error message is then displayed to the user in a pop-up dialog.

The DLL external function signals the presence of an error message by returning a status value of -2. When
GoldSim processes the results of the DLL external function call, it will interpret the first element of the output
arguments arrray (outargs in our source-code example) as a pointer to a memory location where the error string can
be found. The memory containing the string must have static scope, so that it will still be available when GoldSim
retrieves the string. The string must also be NULL-terminated, even when returning from a FORTRAN DLL. If
either of these recommendations are not followed, GoldSim will likely crash when it tries to display the error
message.

The following code is an example of a C language function that will properly handle passing a message from a
DLL external function to GoldSim. The ULONG_PTR is cast to different types on 64-bit (unsigned long) and 32-
bit (unsigned __int64), so that it will work for building both 32-bit and 64-bit binaries.

// Utility method used to simplify the sending of an error message to GoldSim

void CopyMsgToOutputs (const char* sMsg, double* outargs)

{

// Static character array used to hold the error message.

// This needs to be static so that it will be "in scope" when it is read by GoldSim.
static char sBuffer[200];

// Clear out any old data from the buffer

memset (sBuffer, 0, sizeof (sBuffer));

// Cast the first output array element as a pointer.

// ULONG_PTR is used because it will work for both 32-bit and 64-bit DLLs
ULONG_PTR* pAddr = (ULONG_PTR*) outargs;

// Copy the string data supplied into the static buffer.

// Safer version of string copy is used. If your compiler does not support this you
// should remove the comments in front of the next line and add to the next one.

// strncpy(sBuffer, sMsg, sizeof (sBuffer) - 1);

- 1168 -

DLL Calling Details

strncpy s(sBuffer, sMsg, sizeof(sBuffer) - 1);

// Copy the static buffer pointer to the first output array element.
*pAddr = (ULONG_PTR) sBuffer;

}

For FORTRAN DLLs, the following code performs the same function:

! Utility subroutine to simplify sending an error message to GoldSim
subroutine copy msg to outputs(smsg, outargs)

implicit none

character (*) smsg

real (8) outargs (*)

I "Static" character buffer, used to store the error message so

! that it can be returned to GoldSim.

character (80), save :: sbuffer

! Create a shared memory variable that can be interpreted either as integer or real.
integer(8) ioutputl

real(8) doutputl

equivalence (ioutputl, doutputl)

| Copy the message into the buffer. Truncate it if it is too long
! Make sure that it is null terminated!

if (len(smsg) .lt. 80) then

sbuffer = smsg // char(0)

else

sbuffer = smsqg(1:79) // char(0)

end if

! Since we are sending back to C++, we need an actual address.

! The "loc" function is not standard, but it is supported by all

| compilers that we checked.

ioutputl = loc (sbuffer)

outargs (1) = doutputl

end subroutine copy msg_to outputs

- 1169 -

Appendix D: GoldSim Units
Database

364.4 Smoots plus 1 ear.

Official length of the Harvard Bridge

Appendix Overview

One of the more powerful features of GoldSim is that it is dimensionally-aware. You enable this capability by
assigning dimensions to the outputs (and hence to the inputs) of the elements in your model. GoldSim has an

extensive internal database of units and conversion factors. This appendix lists all of the units and conversion

factors that are built into GoldSim.

- 1171 -

Built-in Units and Conversion Factors

Built-in Units and Conversion Factors

All units in GoldSim are defined relative to the following basic units:

* meter (m)
o kilogram (kg)

o second (s)

o Kelvin temperature (K)

e ampere (amp)
 radian (rad)

o Candela (cd)
e Mole (mol)

o Item (item)

The following table summarizes all of the built-in units and conversion factors within GoldSim, organized by

category:

Acceleration

Angle
Angle
Angle
Angle
Angle
Angle
Angle
Angular Frequency
Area

Area

Area
Capacitance
Charge

Charge

Mean Acceleration of earth’s
gravity

Degree of Arc

One cycle/revolution
Degree of arc
Minute of Arc
Radian

Revolution (cycle)
Second of Arc
Revolutions per minute
Acre

Acre

Hectare

Farad

Coulomb of Charge

GigaCoulomb of Charge

cycle
deg
minarc
rad
rev
secarc
pm

ac
acre
ha

Fa

Co

GCo

9.80665 m/s2

0.017453293 rad
6.2831853 rad
0.017453293 rad
0.00029088821 rad
1 rad

6.2831853 rad
4.8481368E-06 rad
6°/s

4046.856422 m2
4046.856422 m2
10000 m2

1 s4-amp2/kg-m2

I s-amp

1E+9 s-amp

- 1172 -

Built-in Units and Conversion Factors

Charge KiloCoulomb of charge 1E+3 s-amp
Charge MegaCoulomb of charge MCo 1E+6 s-amp
Charge MicroCoulomb of charge uCo 1E-06 s-amp
Charge MilliCoulomb of charge mCo 1E-3 s-amp
Charge NanoCoulomb of charge nCo 1E-09 s-amp
Charge PicoCoulomb of charge pCo 1E-12 s-amp
Charge TeraCoulomb of charge TCo 1E+12 s-amp
Currency US Dollar $ user defined
Currency Euro EUR user defined
Currency British Pound GBP user defined
Currency Japanese Yen YEN user defined
Currency Australian Dollar AUD user defined
Currency Brazilian Real BRL user defined
Currency Canadian Dollar CAD user defined
Currency Chinese Yuan CNY user defined
Currency Czech Koruna CZK user defined
Currency Danish Krona DKK user defined
Currency Hong Kong Dollar HKD user defined
Currency Hungarian Forint HUF user defined
Currency Mexican Peso MXN user defined
Currency New Zealand Dollar NZD user defined
Currency Norwegian Krone NOK user defined
Currency Russian Rouble RUB user defined
Currency Singapore Dollar SGD user defined
Currency Swedish Krona SEK user defined
Currency Swiss Franc CHF user defined
Currency South African Rand ZAR user defined
Currency Thousand US Dollar k$ 1000 $

- 1173 -

Built-in Units and Conversion Factors

Currency Thousand Euro kEUR 1000 EUR
Currency Thousand British Pound kGBP 1000 GBP
Currency Thousand Japanese Yen kYEN 1000 YEN
Currency Thousand Australian Dollar kAUD 1000 SUD
Currency Thousand Brazilian Real kBRL 1000 BRL
Currency Thousand Canadian Dollar kCAD 1000 CAD
Currency Thousand Chinese Yuan kCNY 1000 CNY
Currency Thousand Czech Koruna kCZK 1000 CZK
Currency Thousand Danish Krone kDKK 1000 DKK
Currency Thousand Hong Kong Dollar kHKD 1000 HKD
Currency Thousand Hungarian Forint kHUF 1000 HUF
Currency Thousand Mexican Peso kMXN 1000 MXN
Currency Thousand New Zealand Dollar kNZD 1000 NZD
Currency Thousand Norwegian Krone kNOK 1000 NOK
Currency Thousand Russian Rouble kRUB 1000 RUB
Currency Thousand Singapore Dollar kSGD 1000 SGD
Currency Thousand Swedish Krona kSEK 1000 SEK
Currency Thousand Swiss Franc kCHF 1000 CHF
Currency Thousand South African Rand kZAR 1000 ZAR
Currency Million US Dollar M$ 1E+6 $
Currency Million Euro MEUR 1E+6 EUR
Currency Million British Pound MGBP 1E+6 GBP
Currency Million Japanese Yen MYEN 1E+6 YEN
Currency Million Australian Dollar MSUD 1E+6 SUD
Currency Million Brazilian Real MBRL 1E+6 BRL
Currency Million Canadian Dollar MCAD 1E+6 CAD
Currency Million Chinese Yuan MCNY 1E+6 CNY
Currency Million Czech Koruna MCZK 1E+6 CZK

- 1174 -

Built-in Units and Conversion Factors

Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Currency
Current
Current
Current
Current
Current
Current
Current
Current
Current
Dose
Dose
Dose
Dose
Dose
Dose
Dose

Dose

Million Danish Krone
Million Hong Kong Dollar
Million Hungarian Forint
Million Mexican Peso
Million New Zealand Dollar
Million Norwegian Krone
Million Russian Rouble
Million Singapore Dollar
Million Swedish Krona
Million Swiss Franc

Million South African Rand
Ampere

GigaAmpere

KiloAmpere

MegaAmpere

MicroAmpere

MilliAmpere

NanoAmpere

PicoAmpere

TeraAmpere

Sievert (dose equivalent)
GigaSievert (dose equivalent)
KiloSievert (dose equivalent)

MegaSievert (dose equivalent)

MicroSievert (dose equivalent)

MilliSievert (dose equivalent)
NanoSievert (dose equivalent)

PicoSievert (dose equivalent)

MDKK
MHKD
MHUF
MMXN
MNZD
MNOK
MRUB
MSGD
MSEK
MCHF
MZAR
amp
Gamp
kamp
Mamp
uamp
mamp
namp
pamp
Tamp
sV
GSv
kSv
MSv
uSv
mSv
nSv

pSv

1E+6 DKK
1E+6 HKD
1E+6 HUF
1E+6 MXN
1E+6 NZD
1E+6 NOK
1E+6 RUB
1E+6 SGD
1E+6 SEK
1E+6 CHF
1E+6 ZAR
1 amp
1E+9 amp
1E+3 amp
1E+6 amp
1E-6 amp
1E-3 amp
1E-9 amp
1E-12 amp
1E+12 amp
1 m2/s2
1E+9 m2/s2
1E+3 m2/s2
1E+6 m2/s2
1E-6 m2/s2
1E-3 m2/s2
1E-9 m2/s2

1E-12 m2/s2

- 1175 -

Built-in Units and Conversion Factors

Dose

Dose

Dose

Dose

Dose

Dose

Dose

Dose

Dose

Dose

Dose

Dose

Dose

Electrical Resistance
Electrical Resistance
Electrical Resistance
Electrical Resistance
Electrical Resistance
Electrical Resistance
Electrical Resistance
Electrical Resistance
Electrical Resistance
Energy

Energy

Energy

Energy

Energy

Energy

TeraSievert (dose equivalent)
Gray (dose absorbed)
GigaGray (dose absorbed)
KiloGray (dose absorbed)
MegaGray (dose absorbed)
MicroGray (dose absorbed)
MilliGray (dose absorbed)
NanoGray (dose absorbed)
PicoGray (dose absorbed)
TeraGray (dose absorbed)
RAD dose

REM dose

MilliREM dose

Ohm

GigaOhm

KiloOhm

MegaOhm

MicroOhm

MilliOhm

NanoOhm

PicoOhm

TeraOhm

British Thermal Unit (Int’1)
Calorie

GigaCalorie

KiloCalorie

MegaCalorie

MicroCalorie

TSv
Gy
GGy
kGy

MGy

RADD

mREM
ohm
Gohm
kohm
Mohm
uohm
mohm
nohm
pohm
Tohm
BTU
cal
Geal
kcal
Mcal

ucal

1E+12 m2/s2

1 m2/s2

1E+9 m2/s2

1E+3 m2/s2

1E+6 m2/s2

1E-6 m2/s2

1E-3 m2/s2

1E-9 m2/s2

1E-12 m2/s2

1E+12 m2/s2

1E-2 m2/s2

1E-2 m2/s2

1E-5 m2/s2

1 kg-m2/s3-amp2
1E+9 kg-m2/s3-amp2
1E+3 kg-m2/s3-amp2
1E+6 kg-m2/s3-amp2
1E-6 kg-m2/s3-amp2
1E-3 kg-m2/s3-amp2
1E-9 kg-m2/s3-amp2
1E-12 kg-m2/s3-amp2
1E+12 kg-m2/s3-amp2
1055.056 kg-m2/s2
4.1868 kg-m2/s2
4.1868E+9 kg-m2/s2
4.1868E+3 kg-m2/s2
4.1868E+6 kg-m2/s2

4.1868E-6 kg-m2/s2

- 1176 -

Built-in Units and Conversion Factors

Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Energy
Flux (Volume)
Flux (Volume)
Flux (Volume)
Flux (Volume)

Flux (Volume)

MilliCalorie
NanoCalorie
PicoCalorie
TeraCalorie

Joule

Gigaloule
KiloJoule
Megaloule
MicroJoule
MilliJoule
NanoJoule
PicoJoule
Teraloule

Electron Volt
GigaElectron Volt
KiloElectron Volt
MegaElectron Volt
MicroElectron Volt
MilliElectronVvolt
NanoElectron Volt
PicoElectron Volt
TeraElectron Volt
Kilowatt-hour
Acre-feet/day

US Barrels/day
Cubic feet per second
US Gallons per minute

Million gallons per day

mcal
ncal
pcal
Tcal
J

GJ
kJ
MJ
uJ
mJ
nJ
pJ
T
eV
GeV
keV
MeV
ueV
meV
neV
peV
TeV
kwh
afd
bpd
cfs
gpm
MGD

4.1868E-3 kg-m2/s2
4.1868E-9 kg-m2/s2
4.1868E-12 kg-m2/s2
4.1868E+12 kg-m2/s2
1 kg-m2/s2

1E+9 kg-m2/s2
1E+3 kg-m2/s2
1E+6 kg-m2/s2
1E-6 kg-m2/s2

1E-3 kg-m2/s2

1E-9 kg-m2/s2
1E-12 kg-m2/s2
1E+12 kg-m2/s2
1.60E-19 kg-m2/s2
1.60E-10 kg-m2/s2
1.60E-16 kg-m2/s2
1.60E-13 kg-m2/s2
1.60E-25 kg-m2/s2
1.60E-22 kg-m2/s2
1.60E-28 kg-m2/s2
1.60E-31 kg-m2/s2
1.60E-07 kg-m2/s2
3600000 kg-m2/s2
0.01427641 m3/s
1.84E-06 m3/s
0.028316847 m3/s
6.31E-05 m3/s

0.043812639 m3/s

- 1177 -

Built-in Units and Conversion Factors

Force
Force
Force
Force
Force
Force
Force
Force
Force
Force
Force
Force
Force
Force
Force
Force
Force

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Newton
GigaNewton
KiloNewton
MegaNewton
MicroNewton
MilliNewton
NanoNewton
PicoNewton
TeraNewton
Dyne

Gram Force
Kilogram Force
Milligram Force
Pound Force
1,000 Pound Force
Ton Force
Ounce Force

Hertz
(frequency)

GigaHertz
(frequency)

KiloHertz
(frequency)

MegaHertz
(frequency)

MicroHertz
(frequency)

MilliHertz
(frequency)

NanoHertz
(frequency)

GN
kN
MN
uN
mN
nN
pN
™
dyne
gf
kgf
mgf
Ibf
kip
tonf

ozf

GHz

kHz

MHz

uHz

mHz

nHz

1 kg-m/s2

1E+9 kg-m/s2

1E+3 kg-m/s2

1E+6 kg-m/s2

1E-6 kg-m/s2

1E-3 kg-m/s2

1E-9 kg-m/s2

1E-12 kg-m/s2

1E+12 kg-m/s2

1E-05 kg-m/s2
9.80665E-3 kg-m/s2
9.80665 kg-m/s2
9.80665E-6 kg-m/s2
4.448221909 kg-m/s2
4.448221909E+3 kg-m/s2
8.896443819E+3 kg-m/s2
0.278013869 kg-m/s2

1s-1

1E+9s-1

IE+3 s-1

1E+6 s-1

1E-6 s-1

1E-3 s-1

1E-9 s-1

- 1178 -

Built-in Units and Conversion Factors

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Frequency
(non-angular, Rate)

Illuminance
[lluminance

Inverse Area
(mileage)

Items

Items

PicoHertz
(frequency)

TeraHertz

(frequency)

Becquerel

GigaBecquerel

KiloBecquerel

MegaBecquerel

MicroBecquerel

MilliBecquerel

NanoBecquerel

PicoBecquerel

TeraBecquerel

Curie

MicroCurie

PicoCurie

Lambert
Lux (1 Im/m2)

Miles per Gallon

Items

Persons

THz

Bq

GBq

kBq

MBq

uBq

nBq

pBq

TBq

Ci

mCi

pCi

lamb

Ix

mpg

item

pers

1E-12s-1

1E+12 s-1

Is-1

1E+9s-1

1E+3 s-1

1E+6 s-1

1E-6 s-1

1E-3 s-1

1E-9 s-1

1E-12s-1

1E+12 s-1

3.7E+10 s-1

3.7E+4 s-1

3.7E-2 s-1

10000 cd/m2
1 cd/m2

425143.68321 m-2

dimensionless

1 item

- 1179 -

Built-in Units and Conversion Factors

Items

Items

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Length

Luminous Intensity
Luminous Intensity
Luminous Intensity
Luminous Intensity

Luminous Intensity

Thousand Persons
Million Persons
Meter
CentiMeter
GigaMeter
KiloNewton
MegaMeter
MicroMeter
MilliMeter
NanoMeter
PicoMeter
TeraMeter
Angstrom

Foot (US)

Inch

Yard
Mil=0.001 inch
Mile

Nautical Mile
Rod

Fathom
Furlong

Light Year
Candela
GigaCandela
KiloCandela
MegaCandela

MicroCandela

kpers
Mpers
m

cm
Gm
km
Mm
um
mm
nm
pm
Tm
Ang
ft,’
in, ”
yard

mil

naut
rd
fath

flng

cd
Ged
ked
Mcd

ucd

1E+3 item
1E+6 item
I m

1E-2 m
1E+9 m
1E+3 m
1E+6 m
1E-6 m
1E-3 m
1E-9 m
1E-12 m
1E+12 m
1E-10 m
0.3048 m
0.0254 m
0.9144 m
2.54E-5m
1609.344 m
1852 m
5.0292 m
1.8288 m
201.168 m
9.46E+15 m
lcd

1E+9 cd
1E+3 cd
1E+6 cd

1E-6 cd

- 1180 -

Built-in Units and Conversion Factors

Luminous Intensity MilliCandela 1E-3 cd
Luminous Intensity NanoCandela ncd 1E-9 cd
Luminous Intensity PicoCandela ped 1E-12 cd
Luminous Intensity TeraCandela Ted 1E+12 cd
Luminous Intensity Lumen (cd/Steradian) Im 0.079577472 cd
Mass Gram g 1E-3 kg

Mass GigaGram Gg 1E+6 kg

Mass KiloGram kg 1 kg

Mass MegaGram Mg 1E+3 kg

Mass MicroGram ug 1E-9 kg

Mass MilliGram mg 1E-6 kg

Mass NanoGram ng 1E-12 kg

Mass PicoGram pg 1E-15 kg
Mass TeraGram Tg 1E+9 kg

Mass Tonne tonne 1E+3 kg

Mass Slug slug 14.5939039 kg
Mass Ounce (mass) ozm 0.028349525 kg
Mass Pound (mass) Ibm 0.4535924 kg
Mass Ton (mass) tonm 907.1848 kg
Math Constants Parts per billion ppb 1E-9

Math Constants Parts per million ppm 1E-6

Math Constants Percentage % 0.01
Permeability Darcy Darcy 9.87E-13 m2
(seepage)

Permeability MilliDarcy md 9.87E-16 m2
(seepage)

Power Watt % 1 kg-m2/s3
Power GigaW GW 1E+9 kg-m2/s3
Power KiloW kW 1E+3 kg-m2/s3

- 1181 -

Built-in Units and Conversion Factors

Power

Power

Power

Power

Power

Power

Power

Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress
Pressure, stress

Pressure, stress

MegaW
MicroW
Milliw
NanoW
PicoW
TeraW
Horsepower (550 ft-1b/sec)
Pascal
GigaMeter
KiloNewton
MegaMeter
MicroMeter
MilliMeter
NanoMeter
PicoMeter
TeraMeter
Bar
GigaBar
KiloBar
MegaBar
MicroBar
MilliBar
NanoBar
PicoBar
TeraBar
KiloPond
Pound per square foot

Pound per square inch

uW
mW
nW
pW
™
hp
Pa
GPa
kPa
MPa
uPa
mPa
nPa
pPa
TPa
bar
Gbar
kbar
Mbar
ubar
mbar
nbar
pbar
Tbar
kp
psf

psi

1E+6 kg-m2/s3
1E-6 kg-m2/s3
1E-3 kg-m2/s3
1E-9 kg-m2/s3
1E-12 kg-m2/s3
1E+12 kg-m2/s3
745.6999209 kg-m2/s3
1 kg/m-s2

1E+9 kg/m-s2
1E+3 kg/m-s2
1E+6 kg/m-s2
1E-6 kg/m-s2
1E-3 kg/m-s2
1E-9 kg/m-s2
1E-12 kg/m-s2
1E+12 kg/m-s2
1E+5 kg/m-s2
1E+14 kg/m-s2
1E+8 kg/m-s2
1E+11 kg/m-s2
1E-1 kg/m-s2
1E+2 kg/m-s2
1E-4 kg/m-s2
1E-7kg/m-s2
1E+17 kg/m-s2
98066.5 kg-m/s2
47.88026215 kg/m-s2

6894.757749 kg/m-s2

- 1182 -

Built-in Units and Conversion Factors

Pressure, stress

Pressure, stress

Quantity of Matter
Quantity of Matter
Quantity of Matter
Quantity of Matter
Quantity of Matter
Quantity of Matter
Quantity of Matter
Quantity of Matter
Quantity of Matter

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Temperature

Torr (mm Hg)
Atmosphere
Mole
GigaMole
KiloMole
MegaMole
MicroMole
MilliMole
NanoMole
PicoMole
TeraMole

Kelvin
temperature

GigaKelvin
temperature

KiloKelvin
temperature

MegaKelvin
temperature

MicroKelvin
temperature

MilliKelvin
temperature

NanoKelvin
temperature

PicoKelvin
temperature

TeraKelvin
temperature

Rankine
temperature

atm
mol
Gmol
kmol
Mmol
umol
mmol
nmol
pmol

Tmol

GK

kK

MK

uk

mK

nK

pK

TK

133.3221913 kg/m-s2
101325 kg/m-s2
1 mol

1E+9 mol

1E+3 mol

1E+6 mol

1E-6 mol

1E-3 mol

1E-9 mol

1E-12 mol
1E+12 mol

1K

1E+9 K

IE+3 K

1E+6 K

1E-6 K

IE-3 K

IE-9K

1E-12 K

1IE+12 K

0.555555556 K

- 1183 -

Built-in Units and Conversion Factors

Temperature

Temperature

Temperature
Temperature
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Time
Velocity
Velocity
Velocity
Velocity
Velocity

Viscosity (Absolute)

Celsius
temperature

Fahrenheit
temperature

Celsius degree
Fahrenheit degree
Second
GigaSecond
KiloSecond
MegaSecond
MicroSecond
MilliSecond
NanoSecond
PicoSecond
TeraSecond
Minute

Hour

Week

Day

Month

Year

Date

Date and time
Feet per minute
Feet per second
Kilometer per hour
Knots

Miles per hour

Centipose

Cdeg
Fdeg

S, sec

ns

ps

Ts
min
hr
week
d, day
mon
yr, a
date
datetime
fpm
fps
kph
kt
mph

cp

0.555555556 K

1K
0.555555556 K
s

1IE+9 s

IE+3 s

1IE+6 s

1E-6 s

1E-3's

1E-9 s

1E-12 s

IE+12 s

60 s

3600 s

604800 s
86400 s
2629800 s
31557600 s
86400 s

86400 s
0.00508 m/s
0.3048 m/s
0.277777778 m/s
0.514444444 m/s
0.44704 m/s

0.001 kg/m/s

- 1184 -

Built-in Units and Conversion Factors

Viscosity (Absolute)
Viscosity (Kinematic)
Voltage
Voltage
Voltage
Voltage
Voltage
Voltage
Voltage
Voltage
Voltage
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume

Volume

Poise

Stoke

Volt
GigaVolt
KiloVolt
MegaVolt
MicroVolt
MilliVolt
NanoVolt
PicoVolt
TeraVolt
Litre
GigaLitre
KiloLitre
MegalLitre
MicroLitre
MilliLitre
NanoLitre
PicoLitre
TeralLitre
Cubic Centimeter
Gallon (US)
Gallon (Imperial)
Quart (US)
Pint(US)
Cup (US)
Fluid ounce

Tablespoon

poise
stoke
v

GV
kV
MV
uV
mV
nV

pV

TV
L,1
GL, Gl
kL, kl
ML, Ml
uL, ul
mL, ml
nL, nl
pL, pl
TL, Tl
cc

gal, galus
gali

qt

pint
cup
floz

tbsp

0.1 kg/m/s

0.0001 m2/s

1 kg-m2/s3-amp
1E+9 kg-m2/s3-amp
1E+3 kg-m2/s3-amp
1E+6 kg-m2/s3-amp
1E-6 kg-m2/s3-amp
1E-3 kg-m2/s3-amp
1E-9 kg-m2/s3-amp
1E-12 kg-m2/s3-amp
1E+12 kg-m2/s3-amp
1E-3 m3

1E+6 m3

I m3

1E+3 m3

1E-9 m3

1E-6 m3

1E-12 m3

1E-15 m3

1E+9 m3

1E-6 m3
3.785412E-3 m3
4.54609E-3 m3
9.46353E-4 m3
4.73177E-4 m3
2.36588E-4 m3
2.96E-5 m3

1.48E-5 m3

- 1185 -

Built-in Units and Conversion Factors

Volume Teaspoon 4.93E-6 m3

Volume Standard cubic foot stcf 0.028316847 m3

Volume Bushel bushel 0.03523907 m3

Volume Barrel (US, oil) bbl 0.1589873 m3

Volume Barrel (US, dry) bbldry 0.11563 m3

Volume Barrel (US, liquid) bblliq 0.11924 m3

Volume Acre-feet af 1.2348183754752E+3 m3
Volume Thousand Acre-feet kf 1.2348183754752E+6 m3
Volume Million Acre-feet Maf 1.2348183754752E+9 m3

- 1186 -

Appendix E: Database Input File
Formats

Art and science cannot exist but in minutely organized particulars.

William Blake, To the Public

Appendix Overview

In simulations which require a great deal of input, it may be desirable for the simulation model to access the
various data sources directly to ensure the quality of the data transfer.

To facilitate this, GoldSim data entry elements can be linked directly to an ODBC-compliant database.
Linking Elements to a Database on page 1094

After defining the linkage, you can then instruct GoldSim to download the data at any time. When it does this,
GoldSim internally records the time and date at which the download occurred, along with other reference
information retrieved from the database (e.g., document references), and this is stored with the model in the Run
Log. This allows you to confirm that the correct data were loaded into your model, and provides very strong and
defensible quality control over your model input data.

GoldSim can import from three different types of databases: a Generic Database, a Simple GoldSim Database, and
an Extended GoldSim Database. This appendix describes the details of the structure and format for each of these
three database types.

In this Appendix

This appendix discusses the following:
o Creating a Generic Database
e Creating a Simple GoldSim Database

e Creating an Extended GoldSim Database

- 1187 -

Creating a Generic Database

Creating a Generic Database

The generic database format requirements are very general:
o The database must be ODBC compliant;

o The selected table must have a field (column) which contains unique IDs which will be used to map data to
specific GoldSim elements. These IDs would typically be the GoldSim element names (but they do not have
to be).

o The table must have one or more columns containing the data items to be downloaded.

Note that by assigning multiple records and using multiple fields for each ID, you can download vector and matrix
data from the generic database.

Downloading from a Generic Database on page 1097

The file GenericDatabase.gsm in the General Examples/Database folder of your GoldSim directory (accessed by
selecting File | Open Example... from the main menu) provides an example of how to use a Generic database. This
folder also includes the sample database referenced by this file (GenericDatabase.accdb), created using Microsoft
Access. In order to use the GoldSim file, you will need to add the database as data sources to your computer.

Adding Data Sources to Your Computer on page 1095

Creating a Simple GoldSim Database

A Simple GoldSim database contains the following three tables:
o tbl Parameter
 tbl Parameter Reference

« tbl Probability Value Pairs

Each of these tables is discussed in detail below.

Simple Database Parameter Table

The Parameter Table (tbl Parameter) must contain the following fields (which must be named as shown below):

UID AutoNumber Unique integer number assigned to each element.

Parameter Text The ID of the GoldSim element. Note that the length of an element ID in
Name GoldSim is limited to 30 characters.

Parameter Memo The full path to the element in GoldSim. This attribute is optional.

Path GoldSim tries to find a record set in the database using the name and

path information. If this query is not successful it will try again just
querying the name. If a path is specified it must end with ‘\’.

- 1188 -

Creating a Simple GoldSim Database

Type Code Text Code to describe the parameter type (see below).

ModDate Date/Time Last Date that the parameter properties were changed. Note that this field
is for information purposes only and is not used by GoldSim.

Current Yes/No This version of the parameter (this record) is considered active in
GoldSim if this flag is set to Yes. Note that only one parameter with the
same name (and path) should have the current flag set to true.

Description Text Description of the parameter, inserted into the Description field for the
element.
Unit Text Unit abbreviation for the parameter. See Appendix D for unit
abbreviations. The unit should be specified without parentheses or
brackets.
Arg 1 Number Value for the first argument for the parameter. All parameters have at
(double) least one argument.

Arg 2 Number Value for the second argument for the parameter
(double)

Arg 3 Number Value for the third argument for the parameter
(double)

Arg 4 Number Value for the fourth argument for the parameter
(double)

Note: Particular care must be taken when importing Stochastics from a database, as different Stochastics could
have different dimensions (e.g., a Binomial is always dimensionless; a Boolean is always a condition). If a
Stochastic is defined in your model as a particular type of distribution whose output is inconsistent with that of
the distribution that you are trying to import from the database, GoldSim will display an error.

Note: Care must also be taken when importing Stochastics that represent temperatures. This is because
temperatures have an absolute reference (i.e., absolute zero). Differences between temperatures are expressed
in ‘deg’ units (Cdeg, Fdeg). This can lead to errors when importing Stochastics, since GoldSim assumes a
single unit for the distribution parameters, while some types of distributions would require two different types
of units. For example, a Normal distribution representing a temperature would require the Mean to be specified
in absolute units (e.g., C) and the Standard Deviation to be specified in difference units (e.g., Cdeg). If faced
with this problem, there are several approaches for addressing this: 1) Use a distribution type where all
parameters have the same units (e.g., triangular, uniform, cumulative); or 2) Specify and import the
distributions as dimensionless and then apply a unit to the sampled value using an Expression element.

Dealing with Temperature Units on page 92

Warning: The special GoldSim units “date” and “datetime” cannot be used when importing from a database.

- 1189 -

Creating a Simple GoldSim Database

Note that the Parameter Path does not need to be defined (it can be blank). In this case, it does not matter where
the element exists in the model. If you specify a path, it must start and end with a backslash (e.g.,
\container | \container2\). If you want to specify the top-level Container (the model root), you should use a single
backslash.

If you specify a path, GoldSim first tries to find a record with the specified element name and path. If it does not
find it, it tries again, ignoring the path.

If GoldSim finds multiple records with the same name and path, and both have the Current field marked “Yes”, it
will issue an error message (i.e., if multiple records in the database have the same name and path, only one record
can have the Current flag set to Yes).

Simple Database Parameter Type Codes and Arguments

The codes for the various parameter types, and their required arguments are shown below:

C e Type
constant (Data 100 Value
element)
constant (vector Data 101 Number of rows 1 (Number of
element) columns)
constant (matrix 102 Number of rows Number of
Data element) columns
uniform 2100 Minimum Maximum
log-uniform 2101 Minimum Maximum
normal 2200 Mean Std.
Deviation
truncated normal 2202 Mean Std. Minimum Maximum
Deviation
log-normal 2300 Geometric Mean Geometric
(geometic input) Std.
Deviation
truncated log-normal 2302 Geometric Mean Geometric Minimum Maximum
(geometric input) Std.
Deviation
log-normal (true 2330 True Mean True Std.
mean input) Deviation
truncated log-normal 2332 True Mean True Std. Minimum Maximum
(true mean input) Deviation
triangular 2400 Minimum Most Likely =~ Maximum

- 1190 -

Creating a Simple GoldSim Database

Distribution

log-triangular

triangular (10/90)
log-triangular
(10/90)

cumulative

log-cumulative

discrete

poisson

beta (generalized)

beta (success,

failure)

BetaPERT

BetarPERT 10/90

gamma

truncated gamma

weibull

truncated weibull

binomial

boolean

2401

2402

2403

2500

2501

2600

2700

2800

2804

4200

4201

2900

2902

3000

3002

3100

3200

Minimum

10th percentile

10th percentile

references Probability
Value Pairs table (see
below)

references Probability
Value Pairs table (see
below)

references Probability
Value_Pairs table (see
below)

Expected Value

Mean

Successes

Minimum

10th percentile

Mean

Mean

Minimum

Minimum

of Picks (Batch size)

Probability of True

Most Likely

Most Likely

Most Likely

Std.
Deviation

Failures

Most Likely

Most Likely

Std.
Deviation

Std.
Deviation

Weibull
Slope

Weibull
Slope

Probability of
Success

Maximum

90th
percentile

90th
percentile

Minimum

Maximum

90th
percentile

Minimum

Mean-
Minimum

Mean-
Minimum

Type_

Maximum

Maximum

Maximum

- 1191 -

Creating a Simple GoldSim Database

C Type_

Student’s t 3300 Degrees of freedom
exponential 3400 Mean
pareto 3500 a b
truncated Pareto 3502 a b Maximum
negative binomial 3600 Successes Probability of
Success
extreme value 3800 Location Scale
(minimum)
extreme value 3803 Location Scale
(maximum)
extreme probability 3900 Number of Samples
(minimum)
extreme probability 3903 Number of Samples
(maximum)
Pearson type 111 4000 Location Scale Shape
sampled results (no 4100 references Probability
extrapolation) Value Pairs table (see
below)
sampled results 4103 references Probability
(extrapolation) Value Pairs table (see
below)

Note that for the Discrete, Cumulative and Sampled Results distributions, the first argument references the val
pair_UID field in the Probability Value Pairs table (described below).

Simple Database Parameter Reference Table

The Parameter Reference Table (tbl Parameter Reference) allows you to specify reference information for the
element.

The table has the following fields:

Parameter Text Primary Key — link from UID in Parameter Table

UID

GS_ Text The text in this field overwrites the Note associated with the element in
Parameter GoldSim. If left blank here, the Note in GoldSim is not overwritten.
Note

- 1192 -

Creating a Simple GoldSim Database

o When GoldSim imports text from a database into a GoldSim Note, it automatically converts text to
hyperlinks in the Note under the following circumstances:

« Any text beginning the prefixes listed below is converted to a hyperlink. The hyperlink terminates when a
space in encountered. As a result, hyperlinks with spaces will not be recognized by GoldSim.

o http://
« WWW.
o ftp://
o ftp.
o file://

« If the character @ is encountered, and text before and after the @ not delimited by a space or a line break
will be considered part of the hyperlink.

Simple Database Array Values Table

The Array Values Table (tbl_Array Values) is used to store an arbitrary number of array values for a vector or

matrix Data element.

The table has the following fields:

Field -

ID Number

Array UID Number

Value Number
Row Number
Column Number

Unique integer number assigned to each row in the table.

The parameter ID from the Parameter Table (tbl Parameter) identifying the
Data element.

The value for the specified row and column of the array.
The row of the array. This index is 1-based.

The column of the array. This index is 1-based. It must be set to 1 for vectors.

Simple Database Probability Value Pairs Table

The Probability Value Pair Table (tbl_Probability Value Pairs) is used to store an arbitrary number of value pairs
used in defining discrete, cumulative and sampled results distributions. No other type of element uses this table.

The table has the following fields:

Val pair_ Number

UID

Identifies a set of value-probability-pairs that are used by discrete, cumulative
and sampled results distributions. This distribution must specify this ID in arg_
1 in tbl_Parameter.

- 1193 -

Creating an Extended GoldSim Database

Probability Number The probability (for discrete distributions) or cumulative probability (for
Cumulative distributions) of the data pair (dimensionless). Ignored for sampled
results distributions.

Value Number The value corresponding with the defined probability level for Discrete,
Cumulative and Sampled Results distributions. Uses the unit defined in the
parameter table.

Simple Database Example File and Database Template

The file SimpleDatabase.gsm in the General Examples/Database folder of your GoldSim directory (accessed by
selecting File | Open Example... from the main menu) provides an example of how to use a Simple GoldSim
database. This folder also includes the sample database referenced by this file (SimpleDatabase.accdb), created
using Microsoft Access. In order to use the GoldSim file, you will need to add the database as data sources to your
computer.

Adding Data Sources to Your Computer on page 1095

The Database subfolder also includes a template for creating Simple GoldSim databases
(SimpleDatabaseTemplate.accdb). This template file includes two additional tables (providing parameter type codes
and unit abbreviations) which can be used to support the implementation of custom forms which allow the user to
pick a parameter type code and unit from a list.

Creating an Extended GoldSim Database

An Extended GoldSim database must contain the following three tables:
¢ GS_Parameter
o GS_Parameter Value

e GS_Value Component

Each table is described in detail below.

Note: The tables described below can contain additional fields not used by GoldSim. When importing
information, GoldSim will ignore any extra fields.

Extended Database Parameter Table

The Parameter Table (GS_Parameter) has one record for each linked Element. It contains basic descriptive
information about the Element, and an index (Parameter ID) which links it into the GS_Parameter Value table. It
must contain the following fields:

- 1194 -

Creating an Extended GoldSim Database

T E——

Parameter
1D

Parameter
Name

Description

Units

Parameter
Code

indep_row_

units

indep_col
units

bc_date

Unique integer number assigned to each element

Key field which must match the GoldSim element ID

Text description of the element

String with GoldSim abbreviations for units of the data (see Appendix D for
correct unit abbreviations)

Code for parameter type (see table below)

String with GoldSim abbreviations for units of a table element’s Row
independent variable (only required for tables)

String with GoldSim abbreviations for units of the 2-D table element’s
Column independent variable (only required for 2-D tables)

The default effective date for this item, in format YYYY-MM-DD
HH:MM:SS. If no effective date is specified when downloading data, this
date is used for this particular element.

The Parameter_Code for item is as follows:

100

Inn

2100
2101
2200
2202
2300
2302
2330
2332
2400
2401

2402

Data element

Array Data element, where nn is the # of columns (01 for vectors)

Stochastic:
Stochastic:
Stochastic:
Stochastic:
Stochastic:
Stochastic:
Stochastic:
Stochastic:
Stochastic:
Stochastic:

Stochastic:

Uniform

Log-Uniform

Normal

Truncated Normal

Log-Normal (geometric mean)
Truncated Log-Normal (geometric mean)
Log-Normal (true mean)

Truncated Log-Normal (true mean)
Triangular

Log-Triangular

Triangular (10/90)

- 1195 -

Creating an Extended GoldSim Database

Parameter_Code Element Type

2403 Stochastic: Log-Triangular (10/90)

2500 Stochastic: Cumulative

2501 Stochastic: Log-cumulative

2600 Stochastic: Discrete

2700 Stochastic: Poisson

2800 Stochastic: Generalized Beta

2804 Stochastic: Beta (Success, Failure)

2900 Stochastic: Gamma

2902 Stochastic: Truncated Gamma

3000 Stochastic: Weibull

3002 Stochastic: Truncated Weibull

3100 Stochastic: Binomial

3200 Stochastic: Boolean

3300 Stochastic: Student’s t

3400 Stochastic: Exponential

3502 Stochastic: Truncated Pareto

3600 Stochastic: Negative Binomial

3800 Stochastic: Extreme Value (minimum)
3803 Stochastic: Extreme Value (maximum)
3900 Stochastic: Extreme Probability (minimum)
3903 Stochastic: Extreme Probability (maximum)
4000 Stochastic: Pearson Type III

4100 Stochastic: Sampled Results

4103 Stochastic: Sampled Results (extrapolation)
4200 Stochastic: BetaPERT

4201 Stochastic: BetaPERT (10/90)

5100 1-D Table

52nn 2-D Table, where nn is the no. of columns

File element (no code required)

- 1196 -

Creating an Extended GoldSim Database

Note: Particular care must be taken when importing Stochastics from a database, as different Stochastics could
have different dimensions (e.g., a Binomial is always dimensionless; a Boolean is always a condition). If a
Stochastic is defined in your model as a paticular type of distribution whose output is inconsistent with that of
the distribution that you are trying to import from the database, GoldSim will display an error.

Note: Care must also be taken when importing Stochastics that represent temperatures. This is because
temperatures have an absolute reference (i.e., absolute zero). Differences between temperatures are expressed
in ‘deg’ units (Cdeg, Fdeg). This can lead to errors when importing Stochastics, since GoldSim assumes a
single unit for the distribution parameters, while some types of distributions would require two different types
of units. For example, a Normal distribution representing a temperature would require the Mean to be specifed
in absolute units (e.g., C) and the Standard Deviation to be specified in difference units (e.g., Cdeg). If faced
with this problem, there are several approaches for addressing this: 1) Use a distribution type where all
parameters have the same units (e.g., triangular, uniform, cumulative); or 2) Specify and import the
distributions as dimensionless and then apply a unit to the sampled value using an Expression element.

Dealing with Temperature Units on page 92

Warning: The special GoldSim units “date” and “datetime” cannot be used when importing from a database.

Extended Database Parameter Value Table

The Parameter Value Table (GS_Parameter Value) has one record for each Element and each effective date. Each
record must have a unique Effective Date and Value ID. The Value ID is an index which is used to link into the
actual data values, which are stored in table GS_Value Component. The GS_Parameter Value table must contain
the following fields:

omner Jriow—Josermin

1 Parameter ID Key to link from items in table GS_Parameter
2 Value ID Unique integer key for value record(s) in table GS_Value Component
3 Effective The effective date for this item, in format YYYY-MM-DD HH:MM:SS
Date
4 Reference Written by GoldSim to the Run Log (an optional string)
Document
5 Document_ Written by GoldSim to the Run Log (an optional string)
ID
6 DTN Written by GoldSim to the Run Log (an optional string)
7 MOL Written by GoldSim to the Run Log (an optional string)
8 DOC_Path Network path for the source document (required only for File elements, as

discussed below)

- 1197 -

Creating an Extended GoldSim Database

omner Jrioa—Joermin

9 DOC_SIG CRC signature for File source document (a string required only for File
elements)
10 Parameter Text that is imported into the element’s Note. This must be a “Memo” field,
Note and does not support rich text or HTML. Only plain text can be imported.

The CRC signature is an alphanumeric code that can be used to uniquely identify whether the file contents have
changed. When you download a file, GoldSim compares the CRC signature of the downloaded file with the
original signature that was stored in the database. If these are not identical (indicating that the file has been
changed), the download will fail.

You can generate a CRC signature for a file using the EFIViewer, a small utility program that is installed with
GoldSim.

Extended Database Value Component Table

The Value Component Table (GS_Value Component) stores the actual data values. There are one or more records
for each data value. Each record must contain the following fields:

omner Jrc oo

1 Value ID The index used to link from the GS_Parameter Value
table

2 Component 1D Unique index

3 Type Code Row number for sorting rows in vectors and matrices

(used only arrays).

4-63 Value Column_1, ..., Value Data values, to support tables and matrices with up to 60
Column_60 columns.

For a Data element, the data value is stored in Value_Column_1.

For vector Data elements, the data for each item is stored in Value Column_1, and there should be one record for
each row (item) in the vector. For matrix Data elements, the data for each row of the matrix is stored in Value
Column_1 through Value_Column_nn (where nn is as specified in the Parameter Code field of the Parameter
Table), and there should be one record for each row of the matrix.

Note: For matrix Data elements, data values for each matrix row must be defined in fields 4 to 4+N, in
consecutive order (N being the number of columns as specified in the Parameter Code field of the Parameter
table). The DB fields must be labeled Value Column_1 to Value Column_N. Other field labels are not
supported by GoldSim.

For a 1-D Table element, the independent variable values are stored in Value_Column_1, and the dependent
variable values are stored in Value_Column_2. There is one record for each row in the table.

For a 2-D Table element, the row independent variable values are stored in Value Column_1, and the dependent
variable values are stored in Value Column_2 through Value Column_n, where n is one greater than the number
of columns in the table. The first record for a 2-D Table element contains values for the column independent

- 1198 -

Creating an Extended GoldSim Database

variable in Value Column_2 through Value Column_n, and the successive records contain values for the Row
independent variable followed by values for the dependent variable.

Note: The row independent variable values must be defined in field 4, labeled Value Column_1. Other field
labels are not supported by GoldSim. The dependent variable values must in field 5 through field N+4, and
must be labeled labeled Value Column_2 Value Column_N. Other field labels are not supported by GoldSim.

Note: Matrices and 2-D tables can have no more than 60 columns.

For Stochastic elements other than discrete, cumulative and sampled results, the arguments are stored, in sequence,
in the Value_Column_1 ... Value Column_n entries. The order of the arguments for each type of Stochastic is
listed below:

Uniform

Log-Uniform

Normal

Truncated Normal
Log-Normal (geometric)
Log-Normal (true mean)
Truncated Log-Normal (true mean)
Triangular
Log-Triangular

Poisson

Beta

Generalized Beta
BetaPERT

Gamma

Truncated Gamma
Weibull

Truncated Weibull
Binomial

Boolean

minimum, maximum

minimum, maximum

mean, standard deviation

mean, standard deviation, minimum, maximum
geometric mean, geometric standard deviation

true mean, true standard deviation

true mean, true standard deviation, minimum, maximum
minimum (or 10%), most likely, maximum (or 90%)
minimum (or 10%), most likely, maximum (or 90%)
expected value

successes, failures

mean, standard deviation, minimum, maximum
minimum (or 10%), most likely, maximum (or 90%)
mean, standard deviation

mean, standard deviation, minimum, maximum
minimum, slope, mean-mimimum

minimum, slope, mean-minimum, maximum

picks, probability of success

probability of true

- 1199 -

Creating an Extended GoldSim Database

Student’s t degrees of freedom

Exponential mean

Pareto a,b

Truncated Pareto a, b, maximum

Negative Binomial successes, probability of success
Extreme Value (minimum) location, scale

Extreme Value (maximum) location, scale

Extreme Probability (minimum) number of samples

Extreme Probability (maximum) number of samples

Pearson Type III location, scale, shape

For a discrete, cumulative or sampled results Stochastic element type, there are multiple rows in the table, with one
row for each value. Value Column_1 contains the probability values, and Value_Column_2 contains the result
values. For a sampled results distribution, there is only one value (the result) and this is placed in Value_Column_2
(Value_Column_1 is ignored).

For a Sampled Results distribution, there are multiple rows in the table, with one row for each value. Value
Column_2 contains the result values. Any probabilities entered in Value Column_1 are ignored (all results have
equal weights).

Extended Database Example File

The file ExtendedDatabase.gsm in the General Examples/Database folder of your GoldSim directory (accessed by
selecting File | Open Example... from the main menu) provides an example of how to use an Extended GoldSim
database. This folder also includes the sample database referenced by this file (ExtendedDatabase.accdb), created
using Microsoft Access. In order to use the GoldSim file, you will need to add the database as data sources to your
computer.

Adding Data Sources to Your Computer on page 1095

- 1200 -

Appendix F: Integration Methods
and Timestepping Algorithm

On two occasions | have been asked [by members of Parliament], 'Pray, Mr.
Babbage, if you put into the machine wrong figures, will the right answers
come out?' | am not able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

Charles Babbage

Appendix Overview

The elements and links in a GoldSim model represent a system of equations. Except in the simplest cases, these are
systems of differential equations, and they are often nonlinear and discontinuous. In general, the systems of
equations that GoldSim must solve will not have an analytical solution (i.e., they cannot be solved exactly), and
must be solved numerically (i.e., using an algorithm that provides a numerical approximation to the actual
solution).

In order to effectively use GoldSim, particularly for complex problems, it is important to have a basic
understanding of the factors affecting the accuracy of your model, and the nature of the numerical approximations
used by GoldSim.

This appendix provides a brief discussion of these numerical algorithms.

In this Appendix

This appendix discusses the following:
o Factors Affecting the Accuracy of Simulation Models
e Primary Numerical Approximations in GoldSim

e Summary of GoldSim’s Dynamic Timestepping Algorithm

- 1201 -

Factors Affecting the Accuracy of Simulation Models

Factors Affecting the Accuracy of Simulation Models

A simulation model is an abstract representation of an actual (or hypothetical) system. By definition, it is a
simplification of reality, with the goals being to include those aspects that are assumed to be important and omit
those which are considered to be nonessential, so as to derive useful predictions of system performance in an
efficient manner.

In addition, for most real world systems, there will be significant uncertainty regarding the processes that are
controlling the system and the parameter values describing those processes. As a result, the most important factor
impacting the accuracy of your model is the degree to which your conceptual and mathematical model have
captured reality and the degree to which you have quantitatively represented your uncertainty in the system. In
most real world systems that you would simulate in GoldSim, the uncertainty in the simulated result due to your
uncertainty in the processes and parameters controlling the system will be far greater than any inaccuracies
introduced by the numerical solution method. As a result, it will generally be more worthwhile for you to spend
your time ensuring that your model captures the key aspects of the system realistically rather that worrying about
the numerical accuracy of the solution.

Having said that, it is still important to understand the nature of the inaccuracies that can arise from GoldSim’s
numerical approximations in order to ensure that these do indeed remain small. The primary numerical factors
affecting the accuracy of a GoldSim model are as follows:

« Integrating Differential Equations: GoldSim solves differential equations by numerically integrating them
(via Stocks and Delays). This numerical integration is the largest potential source of numerical inaccuracies
in a GoldSim model.

+ Solving Coupled Equations: In some cases, the system you wish to model may include coupled equations
or coupled differential equations. Solutions of these types of equations can be computationally-intensive
(e.g., nonlinear coupled differential equations). For some specific types of coupled systems, GoldSim
provides fast and accurate solution techniques. In other cases, these equations must be solved approximately
using Previous Value elements. The use of Previous Value elements in this case can introduce numerical
approximations that are of the same order as those introduced via numerical integration of ordinary
differential equations.

Using Advanced Algorithms to Solve Coupled Equations on page 1208

+ Representing Discrete Events: In many real world systems, discrete events occur which impose
discontinuous changes onto the system. Superimposing such discontinuities onto a continuously-varying
system discretized in time can introduce inaccuracies. GoldSim provides a powerful timestepping algorithm
for accurately representing such systems.

These items are discussed in the sections below.

Note: Round-off error is sometimes noted as an important source of error in simulation models. Although this
can indeed be important for some specialized engineering and science simulation tools, given the nature of
GoldSim applications, and the fact that GoldSim uses double-precision to carry out its calculations, it is highly
unlikely that round-off error could ever have a noticeable impact on a GoldSim model.

Primary Numerical Approximations in GoldSim

The primary numerical approximations in GoldSim are summarized below.

- 1202 -

Primary Numerical Approximations in GoldSim

GoldSim Numerical Integration Algorithm

Stocks (Integrators, Reservoirs and Pools) represent time integrals of the form:

Value = Intitial Value + / (Rate of Change) dt

The Rate of Change, of course, can be a function of time.

In this case, we are solving the following differential equation:

dValue
dt

= Rate of Change Value;—o = Intial Value

Numerically, GoldSim approximates the integral shown above as a sum:

Value(t,) = Intial Value + Z Rate of Change(t; — At;) At;

i=1

where

At; is the timestep length just prior to time t; (typically this will be constant in the simulation);
Rate of Change(t; - At;) is the Rate of Change at time = t; - At;; and
Value(t;) is the value at end of timestep i.

Note that the Value at a given time is a function of the Rate of Change at previous timesteps (but is not a function
of the Rate of Change at the current time).

This particular integration method is referred to as Euler integration. 1t is the simplest and most common method
for numerically solving such integrals. The key assumption in the method is that the rate remains constant over a
timestep. The validity of this assumption is a function of the length of the timestep and the timescale over which
the rate is changing. The assumption is reasonable if the timestep is sufficiently small.

To get a feeling for the errors that can be produced by Euler integration, consider the following very simple
integral:

Value = Initial Value + f —k * Value dt

where k is a constant. This is the equation for simple (exponential) first-order decay, and the analytical solution is:
Value = Initial Value * e 7%

The timescale of the dynamic process can be quantified in terms of a half-life (the time it takes the current value to
decay to half of its initial value). The half-life is equal to 0.693/k. The table below compares the results of
computing the Value analytically and numerically (by comparing the results at 20 days assuming an initial value of
100 and a half-life of 10 days):

Analytical Solution 25.00 -

Timestep = 5 days 18.24 9.0%

- 1203 -

Primary Numerical Approximations in GoldSim

Timestep = 1 days 23.78 1.6%
Timestep = 0.5 days 24.40 0.8%
Timestep = 0.1 days 24.89 0.1%

A plot of these results is shown below:

Integration Error

100 — o= Timestep = 0.1 day
- mm == = Timestep = 0.5 days
90 — =— = Timestep = 1 day B
20 — e = Timestep = 5 days i
Analyficsl
70
® 60
E 50
40
30
20
10
0 1
0 4] 10 15 20
Time [dayrs}

As can be seen, with the exception of the 5 day timestep, the Euler integration method is relatively accurate. In
fact, for most systems that you will be simulating using GoldSim, a numerical error of several percent is likely to
be acceptable (and much smaller than the error caused by the uncertainty in the initial conditions, the parameters,
and the conceptual model). As a general rule, your timestep should be 1/3 to 1/10 of the timescale of the fastest
process being simulated in your model.

Selecting the Proper Timestep on page 1206

Warning: The magnitude of the integration error depends on the nature of the model. In stable models that are
dominated by negative feedback loops (and hence tend toward equilibrium), the errors tend to diminish with
time. Systems that are unstable and grow exponentially or oscillate with no damping tend to accumulate errors
over time. For these types of systems (e.g., a swinging pendulum), a very small timestep may be required to
accurately simulate the system using Euler integration.

- 1204 -

Primary Numerical Approximations in GoldSim

Note: In cases where a small timestep is required to maintain accuracy, this can be done in a very
computational efficient way by using Containers with Internal Clocks, which allow you to locally use a much
smaller timestep.

Specifying Containers with Internal Clocks on page 499

Other Integration Methods

Although the Euler method is simple and commonly used, other integration methods exist which can achieve
higher accuracy with a larger timestep (e.g., Runga-Kutta, variable timestep methods). Because these methods can
use a much larger timestep without losing accuracy, they are more computationally efficient.

These methods, while being important for some types of systems (e.g., sustained oscillators like a pendulum), are
not incorporated into GoldSim for the following reasons:

o Higher order methods are most useful when simulating physical systems in which the mathematical model,
initial conditions and input parameters are known very precisely, and small integration errors can be
significant. For the most part, the kinds of systems that you will be simulating using GoldSim can be
handled effectively using Euler integration.

o Higher-order methods work best when simulating continuously-varying systems. They do not deal well with
systems that behave discontinuously and/or are impacted by discrete changes. Most real world systems do
not vary continuously, and GoldSim therefore provides powerful algorithms for accurately superimposing
discrete changes (discontinuities) onto a continuously-varying system. These algorithms are incompatible
with higher-order integration methods.

Accurately Simulating Discrete Events that Occur Between Timesteps on page 1207

o For some kinds of systems (e.g., mass or heat transport using the Contaminant Transport Module), GoldSim
uses powerful algorithms to accurately solve nonlinear coupled differential equations. These algorithms are
incompatible with higher-order integration methods.

Using Advanced Algorithms to Solve Coupled Equations on page 1208

As mentioned above, in cases where a small timestep is required to maintain accuracy using Euler integration, this
can be done in a very computational efficient way by using Containers with Internal Clocks, which allow you to
locally use a much smaller timestep.

Specifying Containers with Internal Clocks on page 499

Approximate Solutions to Coupled Equations

In some situations, you may wish to simulate a static or dynamic processes in which the variables in the system are
coupled such that they respond instantaneously to each other, with no time lags. In GoldSim, these are referred to
as recursive loops, and they are treated differently from feedback loops.

If you encounter a system such as this in one of your models, you can handle it in one of two ways. First, you
could solve the system of equations directly either prior to running the model (e.g., using substitution), or
dynamically while running the model (e.g., using an External element or GoldSim’s matrix functions to solve the
appropriate equations). Note, however, that for many complex models (e.g., non-linear coupled equations), the
solution could be very computationally intensive.

GoldSim offers an alternative: solve the equations approximately and iteratively using Previous Value elements. A
Previous Value element allows you to reference the previous value (i.e., the previous timestep) of an output.

- 1205 -

Summary of GoldSim’s Dynamic Timestepping Algorithm

Creating Recursive Loops Using Previous Value Elements on page 1023

Selecting the Proper Timestep

As a general rule, your timestep should be 3 to 10 times shorter than the timescale of the fastest process being
simulated in your model. In simple systems, you should be able to determine the timescales of the processes
involved. In more complex models, however, it may be difficult to determine the timescales of all the processes
involved.

In addition, for some kinds of models (e.g., some oscillating systems), this general rule may not be sufficient and
you may need a smaller timestep).

Therefore, after building your model, you should carry out the following experiment:
1. Carry out an expected value or median value simulation.

2. Reduce the timestep length by half (increase the number of timesteps by a factor of 2), rerun the model, and
compare results.

3. Continue to half the timestep length until the differences between successive simulations are acceptable.

Summary of GoldSim’s Dynamic Timestepping
Algorithm

GoldSim provides a powerful timestepping algorithm that can dynamically adjust to more accurately represent
discrete events, respond to rapidly changing variables in your model, represent specified SubSystems in your model
using different timesteps, and accurately represent some special kinds of systems (e.g., mass and heat transport
within the Contaminant Transport Module).

These features are discussed in detail elsewhere in this document. To complement the rest of the information
provided in this appendix, however, these features are summarized here.

Defining Specific Periods with Shorter Timesteps

GoldSim allows you to increase or decrease the timestep length according to a specified schedule during a
simulation (e.g., start with a small timestep, and then telescope out to a larger timestep). This can be useful, for
example, if you know that early in a simulation, parameters are changing rapidly, and hence you need a smaller
timestep.

You do this by defining Periods Steps, which have different durations and timestep lengths. An example of pre-
specified time periods is shown below:

Periods that use shorter timesteps

| Between '0 day’ and '10 day’ the timestep i '0.2 day"
Between "1 day’ and "20 day’ the timestep is "1 day’

Add... Remove Edit...

Adding Shorter Timesteps Over Defined Periods on page 492

- 1206 -

Summary of GoldSim’s Dynamic Timestepping Algorithm

Dynamically Adjusting the Timestep

Although defining shorter timesteps over defined periods can be very useful, you must fully specify them prior to
running the simulation. That is, you must know how you would like to alter your timestep prior to running the
model. In some cases, however, it may not be possible to do this. That is, in complex systems (particularly ones
with uncertain parameters), variables may change at different rates in different realizations, in ways that you cannot
predict prior to running the model.

To better simulate these kinds of systems, GoldSim provides an advanced feature that allows you to dynamically
adjust the timestep during a simulation (i.e., insert “internal” timesteps) based on the values of specified parameters
in your model. For example, you could instruct GoldSim to use a timestep of 1 day if X was greater than Y, and 10
days if X was less than or equal to Y. Similarly, you could instruct GoldSim to use a short timestep for a period of
10 days after a particular event occurs, and then return to the default timestep.

Dynamically Controlling the Timestep on page 496

Assigning Different Timesteps to SubSystems

In addition to providing a dynamic timestepping algorithm on a global scale (i.e., for the entire model), GoldSim
also enables you to apply dynamic timestepping to specific Containers. This allows you to specify different
timesteps for different parts (i.e., Containers) in your model. For example, if one part of your model represented
dynamics that changed very rapidly (requiring a 1 day timestep), while the rest of the model represented dynamics
that changed much more slowly (requiring a 10 day timestep), you could assign a 10 day timestep to the model
globally, and a 1 day timestep to the container representing the SubSystem that changed rapidly.

Specifying Containers with Internal Clocks on page 499

Accurately Simulating Discrete Events that Occur Between Timesteps

In some cases, events or other changes in the model may not fall exactly on a scheduled update. That is, some
events or changes may actually occur between scheduled updates of the model. These trigger an “unscheduled
update” of the model. Unscheduled updates are timesteps that are dynamically inserted by GoldSim during the
simulation in order to more accurately simulate the system. That is, they are not specified directly prior to running
the model. GoldSim inserts them automatically (and, generally, without you needing to be aware of it).

“Unscheduled updates” can be generated in the following ways:
o When events are ouput by a Timed Event, Event Delay, Discrete Change Delay or Time Series element;
o By manually specifying a dynamic timestep (i.e., dynamically controlling the time between updates);
o When a stock (e.g., Reservoir or Pool element) reaches an upper or lower bound;
¢ When a Resource becomes exhausted;
e When any element is triggered by an At Stock Test, At Date or At Etime triggering event; and

« By some specialized elements in GoldSim extension modules (Action and Function elements in the
Reliability Module, Fund elements in the Financial Module, and Cell elements in the Flow Module and
Contaminant Transport Module).

When any of these events occur, GoldSim automatically inserts an unscheduled update at the exact time that the
event or change occurs. For example, if you had specified a one day timestep, and a Timed Event occurs at 33.65
days (i.e., between the scheduled one-day updates), GoldSim would insert an unscheduled update at 33.65 days.

Understanding Timestepping in GoldSim on page 481

- 1207 -

Summary of GoldSim’s Dynamic Timestepping Algorithm

By default, scheduled updates are always dynamically inserted by GoldSim. However, in some (rare) cases, you
may want to prevent unscheduled updates from being inserted. For example, if your model included a specialized
algorithm that was designed based on the assumption that the timestep was constant, inserting unscheduled updates
could invalidate the algorithm. To support such situations, GoldSim allows you to disable unscheduled updates.

Warning: Because unscheduled updates are intended to more accurately represent a complex dynamic system,
disabling this feature should be done with caution, and is generally not recommended.

oControlling Unscheduled Updates on page 495

Using Advanced Algorithms to Solve Coupled Equations

For some special types of systems, GoldSim provides additional dynamic timestepping algorithms (different from
the timestep algorithms described above) to more accurately solve these equations. For example, the Contaminant
Transport Module utilizes dynamic timestep adjustment to solve the coupled differential equations associated with
mass and heat transport.

This algorithm allows GoldSim to handle “stiff” systems (systems with widely varying time constants) as well as
nonlinear aspects of the system in a very accurate and computationally efficient manner. This algorithm is
discussed in the GoldSim Contaminant Transport Module User’s Guide.

- 1208 -

