Appendix A: Introduction to
Probabilistic Simulation

In this Appendix

Our knowledge of the way things work, in
society or in nature, comes trailing clouds
of vagueness. Vast ills have followed a

belief in certainty.

Kenneth Arrow, / Know a Hawk from a

Handsaw

Appendix Overview

This appendix provides a very brief introduction to probabilistic simulation (the
quantification and propagation of uncertainty). Because detailed discussion of
this topic is well beyond the scope of this appendix, readers who are unfamiliar
with this field are strongly encouraged to consult additional literature. A good
introduction to the representation of uncertainty is provided by Finkel (1990)
and a more detailed treatment is provided by Morgan and Henrion (1990). The
basic elements of probability theory are discussed in Harr (1987) and more
detailed discussions can be found in Benjamin and Cornell (1970) and Ang and
Tang (1984).

This appendix discusses the following:
e  Types of Uncertainty
e Quantifying Uncertainty
e  Propagating Uncertainty
e A Comparison of Probabilistic and Deterministic Analyses

e References
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Understanding
Probability
Distributions

Types of Uncertainty

Many of the features, events and processes which control the behavior of a
complex system will not be known or understood with certainty. Although there
are a variety of ways to categorize the sources of this uncertainty, for the
purpose of this discussion it is convenient to consider the following four types:

e  Value (parameter) uncertainty: The uncertainty in the value of a
particular parameter (e.g., a geotechnical property, or the development
cost of a new product);

e  Uncertainty regarding future events: The uncertainty in the ability to
predict future perturbations of the system (e.g., a strike, an accident, or
an earthquake).

e  Conceptual model uncertainty: The uncertainty regarding the detailed
understanding and representation of the processes controlling a
particular system (e.g., the complex interactions controlling the flow
rate in a river); and

e Numerical model uncertainty: The uncertainty introduced by
approximations in the computational tool used to evaluate the system.

Incorporating these uncertainties into the predictions of system behavior is
called probabilistic analysis or in some applications, probabilistic performance
assessment. Probabilistic analysis consists of explicitly representing the
uncertainty in the parameters, processes and events controlling the system and
propagating this uncertainty through the system such that the uncertainty in the
results (i.e., predicted future performance) can be quantified.

Quantifying Uncertainty

When uncertainty is quantified, it is expressed in terms of probability
distributions. A probability distribution is a mathematical representation of the
relative likelihood of an uncertain variable having certain specific values.

There are many types of probability distributions. Common distributions include
the normal, uniform and triangular distributions, illustrated below:
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Normal Uniform Triangular
Distribution Distribution Distribution

All distribution types use a set of arguments to specify the relative likelihood for
each possible value. For example, the normal distribution uses a mean and a
standard deviation as its arguments. The mean defines the value around which
the bell curve will be centered, and the standard deviation defines the spread of
values around the mean. The arguments for a uniform distribution are a
minimum and a maximum value. The arguments for a triangular distribution are
a minimum value, a most likely value, and a maximum value.

The nature of an uncertain parameter, and hence the form of the associated
probability distribution, can be either discrete or continuous. Discrete
distributions have a limited (discrete) number of possible values (e.g., 0 or 1; yes
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Quantifying Uncertainty

or no; 10, 20, or 30). Continuous distributions have an infinite number of
possible values (e.g., the normal, uniform and triangular distributions shown
above are continuous). Good overviews of commonly applied probability
distributions are provided by Morgan and Henrion (1990) and Stephens et al.
(1993).

There are a number of ways in which probability distributions can be graphically
displayed. The simplest way is to express the distribution in terms of a
probability density function (PDF), which is how the three distributions shown
above are displayed. In simple terms, this plots the relative likelihood of the
various possible values, and is illustrated schematically below:
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Note that the “height” of the PDF for any given value is not a direct
measurement of the probability. Rather, it represents the probability density,
such that integrating under the PDF between any two points results in the
probability of the actual value being between those two points.

|
@  Note: Discrete distributions are described mathematically using
probability mass functions (pmf), rather than probability density
functions. Probability mass functions specify actual probabilities for
given values, rather than probability densities.

An alternative manner of representing the same information contained in a PDF
is the cumulative distribution function (CDF). This is formed by integrating
over the PDF (such that the slope of the CDF at any point equals the height of
the PDF at that point). For any value on the horizontal axis, the CDF shows the
cumulative probability that the variable will be less than or equal to that value.
That is, as shown below, a particular point, say [12, 0.84], on the CDF is
interpreted as follows: the probability that the value is less than or equal to 12 is
equal to 0.84 (84%).
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Characterizing
Distributions
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By definition, the total area under the PDF must integrate to 1.0, and the CDF
therefore ranges from 0.0 to 1.0.

A third manner of presenting this information is the complementary cumulative
distribution function (CCDF). The CCDF is illustrated schematically below:
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A particular point, say [12, 0.16], on the CCDF is interpreted as follows: the

probability that the value is greater than 12 is 0.16 (16%). Note that the CCDF is

simply the complement of the CDF; that is, in this example 0.84 is equal to 1 —
0.16.

Probability distributions are often described using quantiles or percentiles of the
CDF. Percentiles of a distribution divide the total frequency of occurrence into
hundredths. For example, the 90th percentile is that value of the parameter
below which 90% of the distribution lies. The 50th percentile is referred to as
the median.

Probability distributions can be characterized by their moments. The first
moment is referred to as the mean or expected value, and is typically denoted as
. For a continuous distribution, it is computed as follows:

u:Ixf(x)dx
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Specifying
Probability
Distributions

where f(x) is the probability density function (PDF) of the variable. For a
discrete distribution, it is computed as:

N
n= Z X;p(x;)
i=l

in which p(x;) is the probability of x;, and N is the total number of discrete
values in the distribution.

Additional moments of a distribution can also be computed. The nth moment of
a continuous distribution is computed as follows:

o = (x-)" fx) dx
For a discrete distribution, the nth moment is computed as:

N
My =D (% -)" p(x;)

i=1

The second moment is referred to as the variance, and is typically denoted as 2.
The square root of the variance, o, is referred to as the standard deviation. The
variance and the standard deviation reflect the amount of spread or dispersion in
the distribution. The ratio of the standard deviation to the mean provides a
dimensionless measure of the spread, and is referred to as the coefficient of
variation.

The skewness is a dimensionless number computed based on the third moment:

u
skewness= —g

o

The skewness indicates the symmetry of the distribution. A normal distribution
(which is perfectly symmetric) has a skewness of zero. A positive skewness
indicates a shift to the right (and example is the log-normal distribution). A
negative skewness indicates a shift to the left.

The Kurtosis is a dimensionless number computed based on the fourth moment:

kurtosis=u—:

9

The kurtosis is a measure of how "fat" a distribution is, measured relative to a
normal distribution with the same standard deviation. A normal distribution has
a kurtosis of zero. A positive kurtosis indicates that the distribution is more
"peaky" than a normal distribution. A negative kurtosis indicates that the
distribution is "flatter" than a normal distribution.

Given the fact that probability distributions represent the means by which
uncertainty can be quantified, the task of quantifying uncertainty then becomes a
matter of assigning the appropriate distributional forms and arguments to the
uncertain aspects of the system. Occasionally, probability distributions can be
defined by fitting distributions to data collected from experiments or other data
collection efforts. For example, if one could determine that the uncertainty in a
particular parameter was due primarily to random measurement errors, one
might simply attempt to fit an appropriate distribution to the available data.

Most frequently, however, such an approach is not possible, and probability
distributions must be based on subjective assessments (Bonano et al., 1989;
Roberds, 1990; Kotra et al., 1996). Subjective assessments are opinions and
judgments about probabilities, based on experience and/or knowledge in a
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Correlated
Distributions

specific area, which are consistent with available information. The process of
developing these assessments is sometimes referred to as expert elicitation.
Subjectively derived probability distributions can represent the opinions of
individuals or of groups. There are a variety of methods for developing
subjective probability assessments, ranging from simple informal techniques to
complex and time-consuming formal methods. It is beyond the scope of this
document to discuss these methods. Roberds (1990), however, provides an
overview, and includes a list of references. Morgan and Henrion (1990) also
provide a good discussion on the topic.

A key part of all of the various approaches for developing subjective probability
assessments is a methodology for developing (and justifying) an appropriate
probability distribution for a parameter in a manner that is logically and
mathematically consistent with the level of available information. Discussions
on the applicability of various distribution types are provided by Harr (1987,
Section 2.5), Stephens et al. (1993), and Seiler and Alvarez (1996). Note that
methodologies (Bayesian updating) also exist for updating an existing
probability distribution when new information becomes available (e.g., Dakins,
et al., 1996).

Frequently, parameters describing a system will be correlated (inter-dependent)
to some extent. For example, if one were to plot frequency distributions of the
height and the weight of the people in an office, there would likely be some
degree of positive correlation between the two: taller people would generally
also be heavier (although this correlation would not be perfect).

The degree of correlation can be measured using a correlation coefficient,
which varies between 1 and -1. A correlation coefficient of 1 or -1 indicates
perfect positive or negative correlation, respectively. A positive correlation
indicates that the parameters increase or decrease together. A negative
correlation indicates that increasing one parameter decreases the other. A
correlation coefficient of 0 indicates no correlation (the parameters are
apparently independent of each other). Correlation coefficients can be computed
based on the actual values of the parameters (which measures linear
relationships) or the rank-order of the values of the parameters (which can be
used to measure non-linear relationships).

One way to express correlations in a system is to directly specify the correlation
coefficients between various model parameters. In practice, however, assessing
and quantifying correlations in this manner is difficult. Oftentimes, a more
practical way of representing correlations is to explicitly model the cause of the
dependency. That is, the analyst adds detail to the model such that the
underlying functional relationship causing the correlation is directly represented.

For example, one might be uncertain regarding the solubility of two
contaminants in water, while knowing that the solubilities tend to be correlated.
If the main source of this uncertainty was actually uncertainty in pH conditions,
and the solubility of each contaminant was expressed as a function of pH, the
distributions of the two solubilities would then be explicitly correlated. If both
solubilities increased or decreased with increasing pH, the correlation would be
positive. If one decreased while one increased, the correlation would be
negative.

Ignoring correlations, particularly if they are very strong (i.e., the absolute value
of the correlation coefficient is close to 1) can lead to physically unrealistic
simulations. In the above example, if the solubilities of the two contaminants
were positively correlated (e.g., due to a pH dependence), it would be physically
inconsistent for one contaminant’s solubility to be selected from the high end of
its possible range while the other’s was selected from the low end of its possible
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Variability and
Ignorance

range. Hence, when defining probability distributions, it is critical that the
analyst determine whether correlations need to be represented.

When quantifying the uncertainty in a system, there are two fundamental causes
of uncertainty which are important to distinguish: 1) that due to inherent
variability; and 2) that due to ignorance or lack of knowledge. IAEA (1989)
refers to the former as “Type A uncertainty” and the latter as “Type B
uncertainty”. These are also sometimes referred to as aleatory and epistemic
uncertainty, respectively.

Aleatory uncertainty results from the fact that many parameters are inherently
variable (random or noisy) over time such that their behavior can only be
described statistically. Examples include the flow rate in a river, the price of a
stock or the temperature at a particular location.

Variability in a parameter can be expressed using frequency distributions. A
frequency distribution displays the relative frequency of a particular value
versus the value. For example, one could sample the flow rate of a river once an
hour for a week, and plot a frequency distribution of the hourly flow rate (the x-
axis being the flow rate, and the y-axis being the frequency of the observation
over the week).

Other parameters are not inherently variable over time, but cannot be specified
precisely due to epistemic uncertainty: we lack sufficient information or
knowledge to specify their value with certainty. Examples include the strength
of a particular material, the mass of a planet, or the efficacy of a new drug.

A fundamental difference between these two types of uncertainty is that
epistemic uncertainty (i.e., resulting from lack of knowledge) can theoretically
be reduced by studying the parameter or system. That is, since the variability is
due to a lack of knowledge, theoretically that knowledge could be improved by
carrying out experiments, collecting data or doing research. Aleatory
uncertainty, on the other hand, is inherently irreducible. If the parameter itself is
inherently variable, studying the parameter further will certainly not do anything
to change that variability. This is important because one of the key purposes of
probabilistic simulation modeling is not just to make predictions, but to identify
those parameters that are contributing the most to the uncertainty in results. If
the uncertainty in the results is due primarily to epistemic parameters, we know
that we could (at least theoretically) reduce our uncertainty in our results by
gaining more information about those parameters.

It should be noted that parameters which have both kinds of uncertainty are not
uncommon in simulation models. For example, in considering the flow rate in a
river, we know that it will be temporally variable (inherently random in time so
it can only be described statistically), but in the absence of adequate data, we
will have uncertainty about the statistical measures (e.g., mean, standard
deviation) describing that variability. By taking measurements, we can reduce
our uncertainty in these statistical measures (i.e., what is the mean flow rate?),
but we will not be able to reduce the inherent variability in the flow.

Note that some quantities are variable not over time, but over space or within a
collection of items or instances. An example is the age of population. If you had
a group of 1000 individuals, you could obtain the age of each individual and
create a frequency distribution of the age of the group. This kind of distribution
is similar to the example of the flow rate in a river discussed above in that both
are described using frequency distributions (one showing a frequency in time,
and one showing a frequency of occurrence within a group). The age example,
however, is fundamentally different from an inherently random parameter.
Whereas a distribution representing an inherently random parameter truly is

GoldSim User’s Guide

Appendix A: Introduction to Probabilistic Simulation ¢ 1125



Propagating Uncertainty

describing uncertainty (we cannot predict the value at any given time), a
distibution representing the age distribution is not describing uncertainty at all.
It is simply describing a variability within the group that we could actually
measure and define very precisely.

It is critical not to combine variability like this with uncertainty and represent
both using a single distribution. For example, suppose that you needed to
represent the efficacy of a new drug. The efficacy is different for different age
groups. Moreover, for each age group, there is scientific uncertainty regarding
its efficacy. A common mistake would be to define a single probability
distribution that represents both the variability due to age and the uncertainty
due to lack of knowledge. Not only would it be difficult to define the shape of
such a distribution in the first place, this would produce simulation results that
would be difficult, if not impossible, to interpret in a meaningful way. The
correct way to handle such a situation would be to disaggregate the problem (by
explicitly modeling each age group separately) and then define different
probability distributions for each age group (with each distribution representing
only the scientific uncertainty in the efficacy for that age group).

Propagating Uncertainty

If the inputs describing a system are uncertain, the prediction of the future
performance of the system is necessarily uncertain. That is, the result of any
analysis based on inputs represented by probability distributions is itself a
probability distribution.

In order to compute the probability distribution of predicted performance, it is
necessary to propagate (translate) the input uncertainties into uncertainties in the
results. A variety of methods exist for propagating uncertainty. Morgan and
Henrion (1990) provide a relatively detailed discussion on the various methods.

One common technique for propagating the uncertainty in the various aspects of
a system to the predicted performance (and the one used by GoldSim) is Monte
Carlo simulation. In Monte Carlo simulation, the entire system is simulated a
large number (e.g., 1000) of times. Each simulation is equally likely, and is
referred to as a realization of the system. For each realization, all of the
uncertain parameters are sampled (i.e., a single random value is selected from
the specified distribution describing each parameter). The system is then
simulated through time (given the particular set of input parameters) such that
the performance of the system can be computed.

This results in a large number of separate and independent results, each
representing a possible “future” for the system (i.e., one possible path the system
may follow through time). The results of the independent system realizations are
assembled into probability distributions of possible outcomes. A schematic of
the Monte Carlo method is shown below:
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A Comparison of Probabilistic and
Deterministic Simulation Approaches

Having described the basics of probabilistic analysis, it is worthwhile to
conclude this appendix with a comparison of probabilistic and deterministic
approaches to simulation, and a discussion of why GoldSim was designed to
specifically facilitate both of these approaches.

The figure below shows a schematic representation of a deterministic modeling
approach:
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In the deterministic approach, the analyst, although he/she may implicitly
recognize the uncertainty in the various input parameters, selects single values
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for each parameter. Typically, these are selected to be “best estimates™ or
sometimes “worst case estimates”. These inputs are evaluated using a simulation
model, which then outputs a single result, which presumably represents a “best
estimate” or “worst case estimate”.

The figure below shows a similar schematic representation of a probabilistic
modeling approach:

Parameter x Parameter y Parameter z
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v

Distributions used as input to model
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Model Re sult = f(x,y,z)

v
Model produces a disfribution of output values

Result

In this case the analyst explicitly represents the input parameters as probability
distributions, and propagates the uncertainty through to the result (e.g., using the
Monte Carlo method), such that the result itself is also a probability distribution.

One advantage to deterministic analyses is that they can typically incorporate
more detailed components than probabilistic analyses due to computational
considerations (since complex probabilistic analyses generally require time-
consuming simulation of multiple realizations of the system).

Deterministic analyses, however, have a number of disadvantages:

e ““Worst case” deterministic simulations can be extremely misleading.
Worst case simulations of a system may be grossly conservative and
therefore completely unrealistic (i.e., they typically have an extremely
low probability of actually representing the future behavior of the
system). Moreover, it is not possible in a deterministic simulation to
quantify how conservative a “worst case” simulation actually is. Using
a highly improbable simulation to guide policy making (e.g., “is the
design safe?”) is likely to result in poor decisions.

e  “Best estimate” deterministic simulations are often difficult to defend.
Because of the inherent uncertainty in most input parameters,
defending “best estimate” parameters is often very difficult. In a
confrontational environment, “best estimate” analyses will typically
evolve into “worst case” analyses.

e Deterministic analyses do not lend themselves directly to detailed
uncertainty and sensitivity studies. In order to carry out uncertainty and
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sensitivity analysis of deterministic simulations, it is usually necessary
to carry out a series of separate simulations in which various
parameters are varied. This is time-consuming and typically results
only in a limited analysis of sensitivity and uncertainty.

These disadvantages do not exist for probabilistic analyses. Rather than facing
the difficulties of defining worst case or best estimate inputs, probabilistic
analyses attempt to explicitly represent the full range of possible values. The
probabilistic approach embodied within GoldSim acknowledges the fact that for
many complex systems, predictions are inherently uncertain and should always
be presented as such. Probabilistic analysis provides a means to present this
uncertainty in a quantitative manner.

Moreover, the output of probabilistic analyses can be used to directly determine
parameter sensitivity. Because the output of probabilistic simulations consists of
multiple sets of input parameters and corresponding results, the sensitivity of
results to various input parameters can be directly determined. The fact that
probabilistic analyses lend themselves directly to evaluation of parameter
sensitivity is one of the most powerful aspects of this approach, allowing such
tools to be used to aid decision-making.

There are, however, some potential disadvantages to probabilistic analyses that
should also be noted:

e Probabilistic analyses may be perceived as unnecessarily complex, or
unrealistic. Although this sentiment is gradually becoming less
prevalent as probabilistic analyses become more common, it cannot be
ignored. It is therefore important to develop and present probabilistic
analyses in a manner that is straightforward and transparent. In fact,
GoldSim was specifically intended to minimize this concern.

e The process of developing input for a probabilistic analysis can
sometimes degenerate into futile debates about the “true” probability
distributions. This concern can typically be addressed by simply
repeating the probabilistic analysis using alternative distributions. If the
results are similar, then there is not necessity to pursue the "true"
distributions further.

e The public (courts, media, etc.) typically does not fully understand
probabilistic analyses and may be suspicious of it. This may improve
as such analyses become more prevalent and the public is educated, but
is always likely to be a problem. As a result, complementary
deterministic simulations will always be required in order to illustrate
the performance of the system under a specific set of conditions (e.g.,
“expected” or “most likely” conditions).

As this last point illustrates, it is important to understand that use of a
probabilistic analysis does not preclude the use of deterministic analysis. In fact,
deterministic analyses of various system components are often essential in order
to provide input to probabilistic analyses. The key point is that for many
systems, deterministic analyses alone can have significant disadvantages and in
these cases, they should be complemented by probabilistic analyses.

References

The references cited in this appendix are listed below.

Ang, A. H-S. and W.H. Tang, 1984, Probability Concepts in

Engineering Planning and Design, Volume II: Decision, Risk, and
Reliability, John Wiley & Sons, New York.

GoldSim User’s Guide

Appendix A: Introduction to Probabilistic Simulation ¢ 1129



References

Bonano, E.J., S.C. Hora, R.L. Keaney and C. von Winterfeldt, 1989,
Elicitation and Use of Expert Judgment in Performance Assessment for
High-I evel Radioactive Waste Repositories, Sandia Report SAND8&9-
1821, Sandia National Laboratories.

Benjamin, J.R. and C.A. Cornell, 1970, Probability, Statistics, and
Decision for Civil Engineers, McGraw-Hill, New York.

Dakins, M.E., J.E. Toll, M.J. Small and K.P. Brand, 1996, Risk-Based
Environmental Remediation: Bayesian Monte Carlo Analysis and the
Expected Value of Sample Information, Risk Analysis, Vol. 16, No. 1,
pp. 67-79.

Finkel, A., 1990, Confronting Uncertainty in Risk Management: A
Guide for Decision-Makers, Center for Risk Management, Resources
for the Future, Washington, D.C.

Harr, M.E., 1987, Reliability-Based Design in Civil Engineering,
McGraw-Hill, New York.

TIAEA, 1989, Evaluating the Reliability of Predictions Made Using
Environmental Transfer Models, IAEA Safety Series No. 100,
International Atomic Energy Agency, Vienna.

Kotra, J.P., M.P. Lee, N.A. Eisenberg, and A.R. DeWispelare, 1996,
Branch Technical Position on the Use of Expert Elicitation in the High-
Level Radioactive Waste Program, Draft manuscript, February 1996,
U.S. Nuclear Regulatory Commission.

Morgan, M.G. and M. Henrion, 1990, Uncertainty, Cambridge
University Press, New York.

Roberds, W.J., 1990, Methods for Developing Defensible Subjective
Probability Assessments, Transportation Research Record, No. 1288,
Transportation Research Board, National Research Council,
Washington, D.C., January 1990.

Seiler, F.A and J.L. Alvarez, 1996, On the Selection of Distributions
for Stochastic Variables, Risk Analysis, Vol. 16, No. 1, pp. 5-18.

Stephens, M.E., B.W. Goodwin and T.H. Andres, 1993, Deriving
Parameter Probability Density Functions, Reliability Engineering and

System Safety, Vol. 42, pp. 271-291.

1130 ¢ Appendix A: Introduction to Probabilistic Simulation GoldSim User’s Guide
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Simulation Details

Clever liars give details, but the cleverest
don't.

Anonymous

Appendix Overview

This appendix provides the mathematical details of how GoldSim represents and
propagates uncertainty, and the manner in which it constructs and displays
probability distributions of computed results. While someone who is not familiar
with the mathematics of probabilistic simulation should find this appendix
informative and occasionally useful, most users need not be concerned with
these details. Hence, this appendix is primarily intended for the serious analyst
who is quite familiar with the mathematics of probabilistic simulation and
wishes to understand the specific algorithms employed by GoldSim.

In this Appendix This appendix discusses the following:
e  Mathematical Representation of Probability Distributions
e  Correlation Algorithms
e Sampling Techniques
e Representing Random (Poisson) Events
o Computing and Displaying Result Distributions
e Computing Sensitivity Analysis Measures

e References
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Mathematical Representation of Probability Distributions

Distributional Forms

Beta Distribution

Mathematical Representation of
Probability Distributions

The arguments, probability density (or mass) function (pdf or pmf), cumulative
distribution function (cdf), and the mean and variance for each of the probability
distributions available within GoldSim are presented below.

The beta distribution for a parameter is specified by a minimum value (a), a
maximum value (b), and two shape parameters denoted S and T. The beta
distribution represents the distribution of the underlying probability of success
for a binomial sample, where S represents the observed number of successes in a
binomial trial of T total draws.

Alternative formulations of the beta distribution use parameters a and f3, or oy
and o, where S=a = a; and (T-S) = = a,.

Frequently the Beta distribution is also defined in terms of a minimum,
maximum, mean, and standard deviation. The shape parameters are then
computed from these statistics.

The beta distribution has many variations controlled by the shape parameters. It
is always limited to the interval (a,b). Within (a,b), however, a variety of
distribution forms are possible (e.g., the distribution can be configured to behave
exponentially, positively or negatively skewed, and symmetrically). The
distribution form obtained by different S and T values is predictable for a skilled
user.

1 -1 T-S-1
df: fx)= ———(x—-a) (b—x

: s O 6
where: g LOI(T-5)

I'(T)

(k)= Ie‘“u k=dy

0
cdf: No closed form
mean: pn= a+$(b—a)
variance: c’=(b-a) ST 25

TXT+1)

Note that within GoldSim, there are three ways to define a Beta distribution.
You can choose to specify S and T (Beta Distribution). Alternatively, you can
specify a mean, standard deviation, minimum and maximum, as defined above
(Generalized Beta Distribution). In this case, GoldSim limits the standard
deviations that can be specified as follows:

o <=0.6u (1-p")

where ,u*:’lg_a, *:bi
-a -a

This constraint ensures that the distribution has a single peak and that it does not
have a discrete probability mass at either end of its range.
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Binomial Distribution

Boolean Distribution
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Finally, you can specify a minimum (a), maximum (b) and most likely value (c)
(BetaPERT distribution). In this case, GoldSim assumes shape parameters are
as follows:

oa=1+4c,

B=5-4c

n
where

_ c—a
" b-a

Note that in this case, the most likely value specified by the user is not
mathematically the most likely value (but is a very close approximation to it).

C

Note that if the BetaPert is defined using the 10 and 90 percentile (instead of a
minimum and a maximum) the minimum and maximum are estimated through
iteration.

The binomial distribution is a discrete distribution specified by a batch size (n)
and a probability of occurrence (p). This distribution can be used to model the
number of parts that failed from a given set of parts, where n is the number of
parts and p is the probability of the part failing.

pmf: P(x)—(:j pX(1-p)"* x=0,1,2,3...

where: (nj = L
X)) x!(n-x)!

cdf: F(x)—zm p (1-p)
i=0

mean: np

variance: np(1-p)

The Boolean (or logical) distribution requires a single input: the probability of
being true, p. The distribution takes on one of two values: False (0) or True (1).

pmf: Px)= 1-p x=0
p x=1

cdf: Fx)= 1-p x=0
1 x=1

mean: pL=p

variance: co?=p(l-p)
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Cumulative Distribution

Log- Cumulative
Distribution
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The cumulative distribution enables the user to input a piece-wise linear
cumulative distribution function by simply specifying value (x;) and cumulative
probability (p;) pairs.

GoldSim allows input of an unlimited number of pairs, Xi, pi. In order to
conform to a cumulative distribution function, it is a requirement that the first
probability equal 0 and the last equal 1. The associated values, denoted x, and
Xn, respectively, define the minimum value and maximum value of the
distribution.

pdf: fx)= 0 X < X0Or X > X
Pin — Pi. X< X < Ko
Xiz1 — X
cdf: F(X) =0 x < Xo
pi + (P — pi)l X < X < X
Xit1 — X
1 X 2 Xp
n
mean: = Z x; F (%))
i=l
n
variance: ol Z x2F(x) - p°
i=l

The log-cumulative distribution enables the user to input a piece-wise
logarithmic cumulative distribution function by simply specifying value (x;) and
cumulative probability (p;) pairs. Whereas in a cumulative distribution, the
density between values is constant (i.e., the distribution between values is
uniform), in a log-cumulative, the density of the log of the value is constant (i.e.,
the distribution between values is log-uniform).

GoldSim allows input of an unlimited number of pairs, x;, pi. In order to
conform to a cumulative distribution function, it is a requirement that the first
probability equal 0 and the last equal 1. The associated values, denoted xo and
Xp, Tespectively, define the minimum value and maximum value of the
distribution. Also, all values must be positive.
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Discrete Distribution

pat: fy="0 X <XOI X 2 Xy
_Pin=Pi excrn
XIn(Xi,; /%) S
cdf: Fx)= 0 X < Xg
), 1 _n0e/%) Xi <X < Xirg
: I+ 1= = A+
In(Xi,1 /) In(Xj,; /%)
1 X 2 Xp
mean: e C (pm -p )(Xi+l - Xi)
i=l1 1 (X /Xi)
variance: o= Z ( pmz—l P, )(XM -X )
n

n

i-1 (X|+1 / X.)

The discrete distribution enables the user to directly input a probability mass
function for a discrete parameter. Each discrete value, x;, that may be assigned to
the parameter, has an associated probability, p;, indicating its likelihood to

occur. To conform to the requirements of a probability mass function, the sum
of the probabilities, p;, must equal 1. The discrete distribution is commonly used
for situations with a small number of possible outcomes, such as “flag” variables
used to indicate the occurrence of certain conditions.

pmf: P(xi) =
cdf: F(xj) =

n
mean:

n
variance: o= z ;
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Exponential
Distribution

Extreme Probabilty
Distribution
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The Exponential distribution is a continuous distribution specified by a mean
value () which must be positive. This distribution is typically used to model the
time required to complete a task or achieve a milestone.

pdf: fo-1, 8" i x20
0  Otherwise

cdf: F(x)= 1—-e # if x>0
0 otherwise

mean: Y7

variance: ,uz

The Extreme Probability distribution provides the expected extreme probability
level of a uniform distribution given a specific number of samples. Both the
Minimum and Maximum Extreme Probability Distributions are equivalent to the
Beta distribution with the following parameters:

Maximum Minimum
S Number of samples 1
(T-S) 1 Number of Samples
pdf: fx)= ——(x—af'(b-x)""
S o)
where: B= rora-s)
I'(T)
(k)= J.e’”u""du
0
cdf: No closed form
S
mean: pn= a+?(b—a)
variance: c’= (b-a) S@T-3)

T2(T +1)
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Extreme Value
Distribution
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Gamma Distribution
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The Extreme Value distribution (also known as the Gumbel distribution) is used
to represent the maximum or minimum expected value of a variable. It is
specified with the mode (m) and a scale parameter (s) that must be positive.

Maximum Minimum
pdf z z
fix)= —¢€ fix)=—¢
S S
~(x-m) (x-m)
wherez=€ 3 wherez=€ S
cdf Fx)=e’ F(x)=1-e*
mean H=m+0.57722s H=m-0.57722s
Variance 2 2
S S
| ()
6 6

The gamma distribution is most commonly used to model the time to the k'
event, when such an event is modeled by a Poisson process with rate parameter
A. Whereas the Poisson distribution is typically used to model the number of
events in a period of given length, the gamma distribution models the time to the
k™" event (or alternatively the time separating the k™ and k™+1 events).

The gamma distribution is specified by the Poisson rate variable, A , and the
event number, k. The random variable, denoted as x, is the time period to the k™
event. Within GoldSim, the gamma distribution is specified by the mean and the
standard deviation, which can be computed as a function of A and k.

pdf:

cdf:

where:

AA X)L A
o= 2% €7 Xr)(k)e
T(k,A

F(x)= —(r (’k )X)

(k)= Ie‘“uk‘ldu
0

X
r'(k, x) :Ie‘”uk“du
0

i

K=+
o2
Y]

1=
o2

(gamma function)

(incomplete gamma function)
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mean:
variance: 2
Note that

mean: k/'A
variance: k/ A2

If k is near zero, the distribution is highly skewed. For k=1, the gamma
distribution reduces to an exponential distribution with mean of 1/A. If k=n/2
and A= ', the distribution is known as a chi-squared distribution with n degrees
of freedom.

|
LO Note: If the mean value (in terms of SI units) is less than 1E-13 or the
ratio of the standard deviation to the mean is less than 0.1, the gamma
is approximated as a normal distribution (truncated such that it is never
less than 0).

Log-Normal The log-normal distribution is used when the logarithm of the random variable

Distribution is described by a normal distribution. The log-normal distribution is often used
to describe environmental variables that must be positive and are positively
skewed.

In GoldSim, the log-normal distribution may be based on either the true mean
and standard deviation, or on the geometric mean (identical to the median) and
the geometric standard deviation. Thus, if the variable x is distributed log-
normally, the mean and standard deviation of log x may be used to characterize

0123456780910 the log-normal distribution. (Note that either base 10 or base e logarithms may
oo be used).
1 1( In(x)-A
pa 00 =——e 3"
CXA2m
where:
2
¢% =In|1+ (gj (variance of In x);
u

€ is referred to as the shape factor; and

A= 1n(p) - %Cz (expected value of In x)

cdf: No closed form solution
mean (arithmetic): = exp[x 4 % ¢ 2 }

The mean computed by the above formula is the expected value of the log-
normally distributed variable x and is a function of the mean and standard
deviation of Inx. The mean value can be estimated by the arithmetic mean of a
sample data set.

variance (arithmetic): o’ =u? [exp(Z;2 )— IJ
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Negative Binomial

Distribution
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The variance computed by the above formula is the variance of the log-normally
distributed variable x. It is a function of the mean of x and the standard deviation
of Inx. The variance of x can be estimated by the sample variance computed
arithmetically.

Other useful formulas:
Geometric mean = e*
Geometric standard deviation = e®

A commonly used descriptor for a log-normal distribution is its Error Factor
(EF), where the EF is defined as (geometric standard deviation) * 1.645. 90% of
the distribution lies between Median/EF and Median*EF.

The negative binomial distribution is a discrete distribution specified by a
number of successes (n), which can be fractional, and a probability of success
(p). This distribution can be used to model the number of failures that occur
when trying to achieve a given number of successes, and is used frequently in
actuarial models.

X+n-1
pmf: P(x)—( J p"(1- p)* x=0,1,2,3..
X
X+n-1) (x+n-1)!
where: =
X x!(n-1)!

X (i+n-1 :
cdf: F(x)=p" Z( : J 1-p)
=0

nd-p)
p

n-p)
p2

mean:

variance:

The normal distribution is specified by a mean (p) and a standard deviation (o).
The linear normal distribution is a bell shaped curve centered about the mean
value with a half-width of about four standard deviations. Error or uncertainty
that can be higher or lower than the mean with equal probability may be
satisfactorily represented with a normal distribution. The uncertainty of average
values, such as a mean value, is often well represented by a normal distribution,
and this relation is further supported by the Central Limit Theorem for large
sample sizes.

pdf: 1 1 xeu
f(x)= e'E(?J
\/272' 0'2
cdf: No closed form solution
mean: u
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Pareto Distribution
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variance: o2

The Pareto distribution is a continuous, long-tailed distribution specified by a
shape parameter (a) and a scale parameter (b). The shape parameter and the
scale parameter must be greater than zero. This distribution can be used to
model things like network traffic in a telecommunications system or income
levels in a particular country.

ab®
pdf: foxy={ e If Xx=b
0  otherwise
1 b\
cdf: F(x)=1 ; if x=b
0 otherwise
ab
mean: -
a-1
_ ab?
variance:

(a-1)(a-2)

Often used in financial and environmental modeling, the Pearson Type I1I
distribution is a continuous distribution specified by location (a), scale () and
shape (p) parameters. Both the scale and shape parameters must be positive.

Note that the Pearson Type I1I distribution is equivalent to a gamma distribution
if the location parameter is set to zero.

1 x—a " ‘(Xi]
pdf: f(x)= —( J e ?/ ifx>a
prp\ #
0 ifx<a
o)
cdf: F(x) = P
I'(p)
mean: w=a+ pp
variance: o= pp’

1140 ¢ Appendix B: Probabilistic Simulation Details

GoldSim User’s Guide



Mathematical Representation of Probability Distributions

Poisson Distribution
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The Poisson distribution is a discrete distribution specified by a mean value, .
The Poisson distribution is most often used to determine the probability for one
or more events occurring in a given period of time. In this type of application,
the mean is equal to the product of a rate parameter, A, and a period of time, ®.
For example, the Poisson distribution could be used to estimate probabilities for
numbers of earthquakes occurring in a 100 year period. A rate parameter
characterizing the number of earthquakes per year would be needed for input to
the distribution. The time period would simply be equal to 100 years.

-u X
pdf: f(x)z% x=0,1,2,3..
x!

cdf: Fx)= ¢* ﬁ

1!

i=0

mean: p=Ao
variance: o’ =u

where A and o are the “rate” and “time period” parameters, respectively. Note
that quotations are used because the terminology rate and time period applies to
only one application of the Poisson distribution.

The Student’s t distribution requires a single input: the number of degrees of
freedom, which equals the number of samples minus one.

mean: 0

v
v-2

variance:

where v is the number of degrees of freedom

The sampled result distribution allows you to construct a distribution using
observed results. GoldSim generates a CDF by sorting the observations and
assuming that a cumulative probability of 1/(Number of Observations) exists
between each data point. If there are multiple data points at the same value, a
discrete probability equal to (N)/(Number of Observations) is applied at the
value, where N is equal to the number of identical observations.

If the Extrapolation option is cleared, a discrete probability of 0.5/(Number of
observations) is assigned to the minimum and maximum values. When the
extrapolation option is selected, GoldSim extends the generated CDF to
cumulative probability levels of 0 and 1 using the slope between the two
smallest and two largest unique observations.
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Triangular Distribution
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The triangular distribution is specified by a minimum value (a), a most likely
value (b), and a maximum value (c).

: - _2A&x-ay)
pdf. f(X) (b—a)(c—a) a<x<b
(c—b)c-a) bsx<c
0 x<aorx>c
cdf: F(X)= 0 x<a
_(x-a) e
(b-a)(c-a) -
2
_(C-x)y b<x<c
(c-b)(c-a)
1 X2C
a+b+c
mean: -
3
2,42, 2
variance: o2_a TbFc’-ab-ac-be

18

Note that if the triangular is defined using the 10" and 90" percentile (instead of
a minimum and a maximum) the minimum and maximum are estimated through
iteration.

The log-triangular distribution is used when the logarithm of the random

variable is described by a triangular distribution. The minimum (a), most likely
(b), and maximum (c) values are specified in linear space.

pdf: f(x) = a<x<b
b c
ln() ln(]
a a
X )\ x
—_— b<x<c¢
ln(cj ln(cj
a b
0 otherwise
cdf: Fx)= 0 x<a
2
a
—_— a<x<b
b
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Uniform Distribution

00 02 04 06 08 10

mean:

variance:

where:

b<x<c

1 X>c

et )
Ee ke e e e

Note that if the log-triangular is defined using the 10" and 90™ percentile
(instead of a minimum and a maximum) the minimum and maximum are
estimated through iteration.

The uniform distribution is specified by a minimum value (a) and a maximum
value (b). Each interval between the endpoints has equal probability of
occurrence. This distribution is used when a quantity varies uniformly between
two values, or when only the endpoints of a quantity are known.

pdf:

cdf:

mean:

variance:

fi(x) = bfa a<x<b
0 otherwise
Fx)= 0 x<a
X—a
b_a a<x<b
1 x>b
_b+a
)
2
Gzz(b—a)
12
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The log-uniform distribution is used when the logarithm of the random variable
is described by a uniform distribution. Log-uniform is the distribution of choice
for many environmental parameters that may range in value over two or more
log-cycles and for which only a minimum value and a maximum value can be
reasonably estimated. The log-uniform distribution has the effect of assigning
equal probability to the occurrence of intervals within each of the log-cycles. In
contrast, if a linear uniform distribution were used, only the intervals in the
upper log-cycle would be represented uniformly.

1

pdf f(X) = m a<x<b
0 x<aorx >b
cdf: Fx)= 0 x<a
Inx - lna
Inb-1Ina asx<b
1 x>b
' H (lnb—ln a)
variance: o= b? —a’ - b-a 2
' Z(Inb —1In a) (lnb —In a)

The Weibull distribution is typically specified by a minimum value (g), a scale
parameter (3), and a slope or shape parameter (o). The random variable must be
greater than 0 and also greater than the minimum value, €.

The Weibull distribution is often used to characterize failure times in reliability
models. However, it can be used to model many other environmental parameters
that must be positive. There are a variety of distribution forms that can be
developed using different values of the distribution parameters.

pdf: fx)= xe | e‘(;:i]
B-¢\ B-¢
cdf: Foo=1-el o)
mean: U= 5+(ﬂ—£)1"(1+l]
a
variance: o’ = (ﬁ—g)z {F(l +£J—F2(l+lﬂ
a a

The Weibull distribution is sometimes specified using a shape parameter, which
is simply B - €. Within GoldSim, the Weibull is defined by €, o, and the mean-«.
As shown above, the mean can be readily computed as a function of €, o, and .
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Representing
Truncated
Distributions

In practice, the Weibull distribution parameters are moderately difficult to

determine from sample data. The easiest approach utilizes the cdf, fitting a
regression through the sample data to estimate o (regression slope) and the
difference quantity, f3 - €.

Several distributions in GoldSim can be truncated at the ends (normal, log-
normal, Gamma, and Weibull). That is, by specifying a lower bound and/or an
upper bound, you can restrict the sampled values to lie within a portion of the
full distribution’s range.

The manner in which truncated distributions are sampled is straightforward.
Because each point in a full distribution corresponds to a specific cumulative
probability level between 0 and 1, it is possible to identify the cumulative
probability levels of the truncation points. These then define a scaling function
which allows sampled values to be mapped into the truncated range.

In particular, suppose the cumulative probability levels for the lower bound and
upper bound were L and U, respectively. Any sampled random number R
(representing a cumulative probability level between 0 and 1) would then be
scaled as follows:

L +R(U-L)

This resulting "scaled" cumulative probability level would then be used to
compute the sampled value for the distribution. The scaling operation ensures
that it falls within the truncated range.

Correlation Algorithms

Several GoldSim elements that are used to represent uncertainty or stochastic
behavior in models permit the user to define correlations between elements or
amongst the items of a vector-type element.

To generate sampled values that reflect the specified correlations GoldSim uses
copulas and the Iman and Conover methodology.

A copula is a function that joins two or more univariate distributions to form a
multivariate distribution. As such, it provides a method for specifiying the
correlation between two variables. Copulas are described in general terms by
Dorey (2006) and in detail by Embrechts, Lindskog and McNeil (2001).

GoldSim uses two different copulas to generate correlated values: the Gaussian
copula and the t-distribution copula. When a Stochastic element is correlated to
itself, or to another Stochastic element, GoldSim uses the Gaussian copula to
generate the correlated value. A vector-type Stochastic or History Generator can
use either the Gaussian copula or a t-distribution copula to generate correlated
values.

The Gaussian copula produces values where the correlation between variables is
stronger towards the middle of the distributions than it is at the tails. The plot
below shows the values for two variables (uniform distributions between 0 and
1) generated using the Gaussian copula with a correlation coefficient of 0.9:
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Stochastic1[1]

Stochastic1[2]

A t-distribution copula produces a correlation that is stronger at the tails than in
the middle. The plot below shows the values for the two variables generated
using the t-distribution copula for the same variables with a correlation
coefficient of 0.9 and the Degrees of Freedom setting in the copula of 1):

1.0

Stochastic1[1]

Stochastic1[2]

The t-distribution’s form is often what is observed in the real world: correlations
at the extremes (e.g. representing a rare, but significant event such as a war) tend
to be higher than correlations in the middle (representing the higher variability
in more common occurrences).

The Degrees of Freedom setting controls the tail dependency in the copula. A
low value produces stronger dependence in the tails, while higher values
produce stronger correlations in the middle of the distributions. This means that
a t-distribution copula with a high number of Degrees of Freedom will begin to
behave like a Gaussian copula.

One of the weaknesses of the copula approach to generating correlated samples
is that it does not respect Latin Hypercube Sampling (with the exception of the
first item in a vector-type stochastic where the Gaussian copula is used to
generate sampled values).

The Iman and Conover approach is designed to produce a set of correlated items
that each respect Latin Hypercube sampling. Complete details on the
algorithm’s methodology can be found in Iman and Conover (1982).

Its behavior is similar, but not identical, to a Gaussian for the first sample:
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Elements

Stochastic1[1]

Stochastic1[2]

However, if the element is resampled during a realization, elements that use the
Iman and Conover approach will use the Gaussian copula to generate the second
and subsequent sets of sampled data.

Sampling Techniques

This section discusses the techniques used by GoldSim to sample elements with
random behavior. These include the following GoldSim elements:

e  Stochastic

e Random Choice

e Timed Event Generator

e Event Delay

e Discrete Change Delay

e History Generator

e Source (in the Radionuclide Transport Module)
e Action element (in the Reliability module)

e Function element (in the Reliability module)

After first discussing how GoldSim generates random numbers in order to
sample these elements, two enhanced sampling techniques provided by GoldSim
(Latin Hypercube sampling and importance sampling) are discussed.

In order to sample an element (we will simplify the discussion here by using a
Stochastic element as an example rather than one of the other types of elements),
GoldSim starts with the CDF of the distribution that we want to sample. Below
is a CDF for a Normal distribution with a mean of 10m and a standard deviation
of 2m:
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To randomly sample this distribution, we simply need to do the following:
1. Obtain a random number (i.c., a number between 0 and 1).

2. Use the CDF to map that random number to the corresponding sampled
value.

So, for example, in the CDF above, a random number of about 0.2 would
correspond to a sampled value of about 8.3m.

As can be seen, this sampling process itself is conceptually very simple. The
more complicated part involves obtaining the random number needed to sample
the element. That is, in order to carry out Monte Carlo simulation, GoldSim (and
any Monte Carlo simulator) needs to consistently generate a series of random
numbers.

In GoldSim, the process consists of the following components:

e Several different types of random number seeds. You can simply
think of a random number seed as an integer number. It actually
consists of a pair of long (32-bit) integers, but that is not important to
the discussion that follows.

e Random numbers. A random number, as used here, has a specific
definition: it is a real number between 0 and 1.

e A seed generator. This is an algorithm that takes as input one random
number seed and randomly generates a new random number seed. A
particular value for the input seed always generates the same output
seed, but different input seeds generate different output seeds.

e A random number generator. This is another algortihm. It takes as
input one random number seed and generates a random number. A
particular value for the random number seed always generates the same
random number, but different random number seeds generate different
random numbers.

Within GoldSim, there are several types of random number seeds:

e  The model itself (as well as any SubModel) has a run seed. If you
choose to Repeat Sampling Sequences (an option on the Monte Carlo
tab of the Simulation Settings dialog), this seed is (reproducibly)
created based on an integer number that can be edited by the user. If
you do not Repeat Sampling Sequences, it is randomly created based
on the computer’s system clock.
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e The realization seed is a mutable seed that is initialized with the run
seed and then updated for each realization.

e  Each Stochastic element (as well as other elements that behave
probabilistically) has its own random number seed. This is referred to
as the element seed. This seed is created (in a random manner, based on
the system clock) when the element is first created.

|
‘ @ Note: No two elements in a GoldSim model can have the same element
seed. This means that if an element is copied and pasted into a model
where no elements have the same seed value, its seed will be
unchanged. However, if it is pasted into the same model, or into a
model where another element already has that seed value, one of the
elements with the same seed value will be given a new unique seed.
(Element seeds can be displayed by selecting the element in the
graphics pane and pressing Ctrl-Alt-Shift-F12).

e For every element that behaves probabilistically), the realization seed
and the element seed are combined together to create a combined seed
for that element. It is this combined seed that is used to generate a
random number using a random number generator.

This random number seed structure is illustrated below:

R DR T Realization

Lo Seed (l) \._

Combined
Seed (i,j)

/'

Element
Seed (j)

The run seed and element seeds are constant during a simulation (they never
change). The run seed is marked using a dashed line to indicate that although it
is constant during a simulation, it can be changed by the user. The element seed
(which is different for each element j) is created when the element is created and
cannot be changed. As we shall see below, however, the realization seeds and
combined seeds are not constant during a simulation but change as the
simulation proceeds.

So given all of this information, let’s describe how GoldSim carries out a Monte
Carlo simulation by considering a very simple model consisting of a single
Stochastic element that is resampled every day, with the model being run for
multiple realizations:

1. At the beginning of the simulation, GoldSim has a value for the run
seed, and a single element seed.

2. At the beginning of the simulation (assuming we are repeating
sampling sequences), the run seed is used to initialize a realization
seed.

3. At the beginning of each realization, we do the following:

a. The current realization seed is input int the seed generator to
generate a new realization seed for this realization.
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b. The realization seed is combined with the element seed to
create a combined seed for the element.

c.  Now that we have the combined seed, two things happen:

i. The combined seed is input into the random number
generator to generate a random number for the
element. This random number is then mapped to the
CDF to obtain a sampled value for the element.

ii. The combined seed is input into the seed generator to
generate a new combined seed that we will use the
next time we need a random number.

d. Whenever we need to resample the element during the
realization (in this case every day), we need a new random
number. To do so, every day we repeat steps i and ii above.

This same logic is shown schematically below:

Begin Simulation

v

Use the run seed to create a realization
seed

v

Combine the realization seed and the
element seed to create a combined seed

!

Use the combined seed to generate a
»{ random number whenever element needs
to be sampled

v

Use the random number and the element’s
CDF to obtain a sampled value

tep through

time ;

Use the combined seed to generate a new
combined seed

Loop
through
realizations

Realization
complete?

Simulation
complete?

End simulation

Start next realization by using current
realization seed to generate a new
realization seed
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Note: GoldSim’s random number generation process is based on a
method presented by L’Ecuyer (1988). As pointed out above, each
seed actually consists of two long (32-bit) integers. When random
numbers are generated, each of the integers cycles through a standard
linear congruential sequence, with different constants used for the two
sequences (so that their repeat-cycles are different). The random
numbers that are generated are a function of the combination of the two
seeds, so that the length of their repeat period is extremely long.

Now let’s consider the various options on the Monte Carlo tab of the
Simulation Settings dialog:

Simulation Settings...

Time

&

(@ Probabilistic Simulation

# Realizations: | 1 =

[CJrun the following Realization only: 1 =
[ Use Latin Hypercube Sampling
Repeat Sampling Sequences

[ spedify Realization Weights:

() Deterministic Simulation

Result Size: 0 byte histories, 0 byte final values

Monte Carlo  Globale  Information

Define Monte Carlo options to carry out a probabilistic simulation,
and specify the sampling method for Stochastic variables.

Result Options. ..

-

Use random points in strata ~

Random Seed:

Element Deterministic Values
Element Mean Values

Spedfied Quantile: 0.5

Concel | [ i

In particular, we will focus on just two fields: Repeat Sampling Sequences and
Random Seed. These two fields impact the run seed in the following ways:

If Repeat Sampling Sequences in checked, you can specify a
Random Seed. The Random Seed is used to create the run seed.

If Repeat Sampling Sequences is cleared, the run seed is created “on
the fly” using the system clock. As a result, it is different every time
the model is run.

These facts, combined with the logic outlined above, can be used to describe
exactly how elements will be sampled in various models under any set of
circumstances. In particular:

If Repeat Sampling Sequences is checked (the default), as long as you
do not modify the model, you will get the same results (i.e., the same
random numbers will be used) if you run the model today, and then run
it again tomorrow. This is because the run seed is unchanged.
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Similarly, if Repeat Sampling Sequences is checked and you copy a
model to someone else (and they do not make any changes), they will
get the same results as you.

If Repeat Sampling Sequences is checked, but the Random Seed is
changed (e.g., from 1 to 2), you will get different results (i.e., different
random numbers will be used). This is because the run seed is
different. If you then change the Random Seed back to the original
value, you will reproduce the original results.

If Repeat Sampling Sequences is cleared, every time you run the
model you will get different results (i.e., different random numbers will
be used). This is because the run seed is different

If two people simultaneously build the same simple model with the
exact same inputs (including the same Random Seed), the results will
still be different (i.e., different random numbers will be used). This is
because the element seeds will be different.

If the user selects the option to Run the following Realization only,
such as realization 16, GoldSim simply iterates through the process the
necessary number of times prior to starting the specified realization.

Latin Hypercube GoldSim provides an option to implement a Latin Hypercube sampling (LHS)

Sampling

scheme (in fact, it is the default when a new GoldSim file is created). The LHS
option results in forced sampling from each “stratum” of each parameter.

The following elements use LHS sampling:

Stochastic

Random Choice

Timed Event Generator

Time Series (when time shifting using a random starting point)
Action (in the Reliability Module)

Function (in the Reliability Module)

Each element’s probability distribution (0 to 1) is divided into up to 10000
equally likely strata or slices (actually, the lesser of the number of realizations
and 10000). The strata are then “shuffled” into a random sequence, and a
random value is then picked from each stratum in turn. This approach ensures
that a uniform spanning sampling is achieved.

|
=

Note: If possible, GoldSim will attempt to create LHS sequences where
subsets are also complete LHS sequences. This means that if the total
number of realizations is an even number, the first half and second half
of the realizations are complete LHS sequences. If the total number of
realizations is divisible by 4 or 8§, that fraction of the total number of
realizations, run in sequence, will be complete LHS sequences. This
property of GoldSim’s LHS sequences is sometimes useful for
statistical purposes and also permits a user to extract a valid LHS
sequence from a partially completed simulation by screening
realizations. The details of this approach are discussed below (“Latin
Hypercube Subsets™).
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Latin Hypercube
Subsets

Note that each element has an independent sequence of shuffled strata that are a
function of the element’s internal random number seed and the number of
realizations in the simulation. If the number of realizations exceeds 10,000, then
at the 10,001st realization each element makes a random jump to a new position
in its strata sequence. A random jump is repeated every 10,000 realizations.

If you select “Use mid-points of strata” in the Simulation Settings dialog in
models with less than 10,000 realizations, GoldSim will use the expected value
of the strata selected for that realization. (Even if this option is selected, in
simulations with greater than 10,000 realizations, the 10,001 and subsequent
realizations will use random values from within the strata selected for that
realization.) Using mid-points provides a slightly better representation of the
distribution, but without the full randomness of the original definition of Latin
Hypercube sampling (as described by McKay, Conover and Beckman, 1979).

If you select “Use random points in strata” in the Simulation Settings dialog,
GoldSim also picks a random value from each stratum.

@  Note: LHS is only applied to the first sampled random value in each
realization. Subsequent samples will not use LHS.

LHS appears to have a significant benefit only for problems involving a few
independent stochastic parameters, and with moderate numbers of realizations.
In no case does it perform worse than true random sampling, and accordingly
LHS sampling is the default for GoldSim.

Note that the binary subdivision approach (described in more detail below) and
the use of mid-stratum values are GoldSim-specific modifications to the original
description of Latin Hypercube Sampling, as described in McKay, Conover and
Beckman (1979).

In order to allow users to do convergence tests, GoldSim’s LHS sampling
automatically organizes the LHS strata for each random variable so that binary
subsets of the overall number of realizations each represent an independent LHS
sample over the full range of probabilities.

For example, if the user does 1,000 realizations, GoldSim will generate strata
such that:

e Realizations 1-125 represent a full LHS sample with 125 strata.
Realizations 126-250, 251-375, etc. through 876-1000 also represent
full LHS samples with 125 strata each.

e  Also, realizations 1-250, 251-500, 501-750, and 751-1000 represent
full LHS samples with 250 strata each.

e And, realizations 1-500 and 501-1000 represent full LHS samples with
500 strata each.

The generation of binary subsets is automatic, and is carried out whenever the
total number of realizations is an even number. Up to 16 binary subsets will be
generated, if the number of realizations can be subdivided evenly four times.
For example, if the total number of realizations was 100 then GoldSim would
generate 2 subsets of 50 strata each and 4 subsets of 25 strata. If the total
number of realizations was 400 then GoldSim would generate 2 subsets of 200
strata, 4 subsets of 100 strata, 8 subsets of 50 strata, and 16 subsets of 25 strata.

The primary purpose of this sampling approach is to use the subsets to carry out
statistical tests of convergence. For example, the mean of each of the subsets of
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Importance Sampling

results could be evaluated and a t-test used to estimate statistics of the
population mean, as described in Iman (1982). Rather than carrying out a set of
independent LHS simulations using different random seeds, this approach
allows the user to run a single larger simulation, with the benefits of a better
overall representation of the system’s result distribution, while still being able to
test for convergence and to generate confidence bounds on the results. (A
secondary benefit of the binary sampling approach is that if a simulation is
terminated partway through it should have a slightly greater likelihood of having
uniform sampling over the completed realizations than normal Latin Hypercube
sampling would.)

The algorithm for assigning strata to the binary subsets is quite simple. For each
pair of strata (e.g., 1 and 2"; 3 and 4™), the first member of the pair is
randomly assigned to one of two “piles” (“left” or “right”), and the second
member is assigned to the opposite pile. That is, conceptually, it can be
imagined that the full set of strata is sent one at a time to a ‘flipper’ that
randomly chooses ‘left’ or ‘right’ on its first, third, fifth etc. activations, and on
its second, fourth, sixth etc. activations chooses the opposite of the previous
value.

For the case of one binary subdivision of a total of N strata, the algorithm goes
through the strata sequentially from lowest to highest, and passes them to a
flipper that generates two ‘piles’ of strata. Each pile will therefore randomly
contain one of the first two strata, one of the second two, and so on. Thus, each
pile will contain one sample from each of the strata that would have been
generated if only N /2 total samples were to be taken. The full sampling
sequence is generated by randomly shuffling each pile and then concatenating
the two sequences.

For four binary subdivisions the same approach is extended, with the first flipper
passing its ‘left’ and ‘right’ outputs to two lower-level flippers. This results in
four ‘piles’ of strata, which again are just randomly shuffled and then
concatenated. The same approach is simply extended to generate eight or
sixteen strata where possible.

For risk analyses, it is frequently necessary to evaluate the low-probability,
high-consequence end of the distribution of the performance of the system.
Because the models for such systems are often complex (and hence need
significant computer time to simulate), and it can be difficult to use the
conventional Monte Carlo approach to evaluate these low-probability, high-
consequence outcomes, as this may require excessive numbers of realizations.

To facilitate these type of analyses, GoldSim allows you to utilize an
importance sampling algorithm to modify the conventional Monte Carlo
approach so that the high-consequence, low-probability outcomes are sampled
with an enhanced frequency. During the analysis of the results which are
generated, the biasing effects of the importance sampling are reversed. The
result is high-resolution development of the high-consequence, low-probability
"tails" of the consequences, without paying a high computational price.

The following elements permit importance sampling:
e  Stochastic
e Random Choice
e Timed Event Generator
e Action (in the Reliability Module)
e  Function (in the Reliability Module)
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How Importance
Sampling Works

=

@ Note: Importance sampling is only applied to the first sampled random
value in each realization for elements with importance sampling
enabled. Subsequent samples will use random sampling.

|
L ~@  Note: In addition to the importance sampling method described here (in
which you can choose to force importance sampling on either the low
end or high end of a Stochastic element’s range), GoldSim also
provides an advanced feature that supports custom importance
sampling that can be applied over user-defined regions of the
Stochastic element’s range.

Read more: Customized Importance Sampling Using User-Defined Realization
Weights (page 1087).

Warning: Importance sampling affects the basic Monte Carlo
mechanism, and it should be used with great care and only by expert
users. In general, it is recommended that only one or at most a very
few parameters should use importance sampling, and these should be
selected based on sensitivity analyses using normal Monte Carlo
sampling. Importance sampling should only be used for elements
whose distribution tails will not be adequately sampled by the
selected number of realizations.

Importance sampling is a general approach to selectively enhance sampling of
important outcomes for a model. In principle, the approach is simple:

1. Identify an important subset of the sampling space;
2. Sample that subset at an enhanced rate; and
3. When analyzing results, assign each sample a weight inversely

proportional to its enhancement-factor.

In conventional Monte Carlo sampling (with or without Latin Hypercube), each
realization is assumed equally probable. It is straightforward, however, to
incorporate a weight associated with each sample in order to represent the
relative probability of the sample compared to the others.

The conventional Monte Carlo approach is as shown below. A uniform 0 — 1
random variable u is sampled, and its value is then used as input to the inverse
cumulative distribution function of the random variable:

X A
£3 Fl(s) ,/
S J/
e -«
T g~ 2
:
g /
1]
T >
s
0-1 Random Variate u
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Biasing (Enhancement)
Functions

In order to do importance sampling, the original uniformly-distributed random
numbers are first mapped onto a non-uniform ‘biased’ sampling function s:

S A
s(u)

Sample weight
e = ds/du

Biased Variate

u

0-1 Random Variate u

The biased variate s is then used to generate the random function. Since the
input random numbers are no longer uniformly distributed, the resulting sample
set is selectively enriched in high-consequence results:

X A

.
F's)

Biased Function b(x)f(x)

Biased Variate s

In general, any continuous monotonic biasing function s which spans the range
0-1, and has s(0) = 0 and s(1) = 1 can be used to generate the set of input random
numbers. The weight associated with each sampled realization is ds/du, the
slope of the biasing function s at the sampled point.

When a number of independent random variables are involved in a model, then
the weight associated with a given realization is simply equal to the product of
the weights of all parameters.

GoldSim uses simple functions to selectively enhance either the upper or the
lower end of an element’s probability distribution.

The biasing function for enhancing the lower end of a distribution is:
u2
+
I+au 1+a

S=uU-

where a is a function of the number of elements that are using importance
sampling. This is equal to zero if only one element uses importance sampling,
and is equal to ten times the number of importance sampled elements in all other
cases. The effect of increasing a is to restrict the importance sampling to a
smaller subset of the full range of the random value, which reduces the negative
impacts of importance sampling numerous variables in the same model.

The sample weight is given by:
ds 1 2u

W=—= 1 — 3 +

du (1+au)’ 1+a
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|
‘----0 Note: For the first 10,000 realizations where GoldSim uses the
expected values of the LHS strata the weight given to each sample is
equal to the integral of s over the stratum divided by the corresponding
integral of u over the strata. For the 10,001% and subsequent
realizations GoldSim will calculate s and w for the sampled point.

The biasing function for enhancing the upper end is:

(1-u) +(1+u)2J

I+a(l-u) 1+a

Supper =1- Siower (1 - U) =1- ((1 - U) -

and the corresponding sample weight is given by:
1 2(1-u
L 20-0)
(1+a-u) l+a

Wupper = Wiower (l - U) =1-

The following plot shows the upper and lower biasing function when a single
element utilizes importance sampling (an a value of zero):

Importance Sampling Algorithm, a=0

0.9 /4 £ |

08 //
0.7 /
0.6 /

0.4 4
0 /

N4 4

Lower End Enhancement |
Upper End Enhancement

0.1 /
o ‘ !

The following figure shows the bias function when three elements are
importance sampled (an a value of 30):
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Behavior of Elements
with Importance
Sampling Enabled

Importance Sampling Algorithm, a=30
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Note the less prominent bias as the number of importance sampled elements
increases.

The Stochastic element provides the option to choose between upper and lower
end enhancement when importance sampling is enabled. However, the other
elements that utilize importance sampling (the Timed Event element, the
Reliability elements and the Random Choice element) importance sample only
one end of the distribution.

Timed Events will use lower end importance sampling on the time to event
distribution specified by the user. The Random Choice element has a slightly
different behavior. When importance sampling is enabed, the Random Choice
element sorts the probability of each outcome from lowest probability to highest
probability and assigns them to sections of a uniform distribution. This uniform
distribution is then importance sampled at the lower end, so that the least
probable outcomes are enhanced.

The Reliability elements will use a combination of these approaches. Time
based failure modes behave in a similar manner to the timed event elements.
Modes with a “probability of failure” perform importance sampling to enhance
the number of failure outcomes.

It is important to note that only the first sampled value utiliz